NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60947-2

> Edition 2.2 2001-11

Edition 2:1995 consolidée par les amendements 1:1997 et 2:2001 Edition 2:1995 consolidated with amendments 1:1997 and 2:2001

Appareillage à basse tension -

Partie 2: Disjoncteurs

Low-voltage switchgear and controlgear -

Part 2: Circuit-breakers

Numéro de référence Reference number CEI/IEC 60947-2:1995+A1:1997+A2:2001

Numérotation des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000. Ainsi, la CEI 34-1 devient la CEI 60034-1.

Editions consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Informations supplémentaires sur les publications de la CEI

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique. Des renseignements relatifs à cette publication, y compris sa validité, sont disponibles dans le Catalogue des publications de la CEI (voir ci-dessous) en plus des nouvelles éditions, amendements et corrigenda. Des informations sur les sujets à l'étude et l'avancement des travaux entrepris par le comité d'études qui a élaboré cette publication, ainsi que la liste des publications parues, sont également disponibles par l'intermédiaire de:

Site web de la CEI (<u>www.iec.ch</u>)

Catalogue des publications de la CEI

Le catalogue en ligne sur le site web de la CEI (www.iec.ch/catig-f.htm) vous permet de faire des recherches en utilisant de nombreux critères, comprenant des recherches textuelles, par comité d'études ou date de publication. Des informations en ligne sont également disponibles sur les nouvelles publications, les publications remplacées ou retirées, ainsi que sur les corrigenda.

• IEC Just Published

Ce résumé des dernières publications parues (www.iec.ch/JP.htm) est aussi disponible par courrier électronique. Veuillez prendre contact avec le Service client (voir ci-dessous) pour plus d'informations.

Service clients

Si vous avez des questions au sujet de cette publication ou avez besoin de renseignements supplémentaires, prenez contact avec le Service clients:

Email: custserv@iec.ch Tél: +41 22 919 02 11 Fax: +41 22 919 03 00

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

IEC Web Site (<u>www.iec.ch</u>)

Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/JP.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60947-2

Edition 2.2

2001-11

Edition 2:1995 consolidée par les amendements 1:1997 et 2:2001 Edition 2:1995 consolidated with amendments 1:1997 and 2:2001

Appareillage à basse tension -

Partie 2: Disjoncteurs

Low-voltage switchgear and controlgear -

Part 2: Circuit-breakers

© IEC 2001 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission 3, rue de Telefax: +41 22 919 0300 e-mail: inmail@iec.ch

3, rue de Varembé Geneva, Switzerland c.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия PRICE CODE XH

Pour prix, voir catalogue en vigueur For price, see current catalogue

SOMMAIRE

AV	ANT-F	PROPOS	10
1	Géné	ralités	12
	1.1	Domaine d'application et objet	12
	1.2	Références normatives	
2	Défin	itions	16
3	Class	sification	24
4	Cara	ctéristiques des disjoncteurs	26
	4.1	Enumération des caractéristiques	
	4.2	Type du disjoncteur	
	4.3	Valeurs assignées et valeurs limites du circuit principal	
	4.4	Catégories d'emploi	34
	4.5	Circuits de commande	36
	4.6	Circuits auxiliaires	36
	4.7	Déclencheurs	36
	4.8	Fusibles incorporés (disjoncteurs à fusibles incorporés)	40
	4.9	Surtensions de manoeuvre	40
5	Inform	mations sur le matériel	40
	5.1	Nature des informations	40
	5.2	Marquage	40
	5.3	Instructions d'installation, de fonctionnement et d'entretien	
6	Cond	litions normales de service, de montage et de transport	
7	Dispo	ositions relatives à la construction et au fonctionnement	44
	7.1	Dispositions constructives	44
	7.2	Dispositions relatives au fonctionnement	
	7.3	Compatibilité électromagnétique (CEM)	
8		is	
	8.1	Nature des essais	60
	8.2	Conformité aux dispositions constructives	62
	8.3	Essais de type	
	8.4	Essais individuels	118
un :	autre ((normative) Coordination en condition de court-circuit entre un disjoncteur et dispositif de protection contre les courts-circuits associés dans le même circuit	128
par	coura	ınt différentiel résiduel	146
Anr	nexe C	(normative) Séquence d'essais en court-circuit sur un pôle séparément	222
Anr	nexe D	(informative) Distances d'isolement et lignes de fuite	224
		(informative) Points faisant l'objet d'un accord onstructeur et l'utilisateur	226
Anr	nexe F	(normative) Essais supplémentaires pour les disjoncteurs	
•		on électronique contre les surintensités	
Anr	nexe G	G (normative) Puissance dissipée	310
Anr	nexe F	l (normative) Séquence d'essais pour les disjoncteurs pour réseaux IT	316

CONTENTS

FOI	REWC	PRD11	
1	Gene	ral13	
	1.1	Scope and object	
	1.2	Normative references15	
2	Defin	itions17	
3		ification25	
4	Chara	acteristics of circuit-breakers27	
	4.1	Summary of characteristics27	
	4.2	Type of circuit-breaker27	
	4.3	Rated and limiting values of the main circuit27	
	4.4	Utilization categories35	
	4.5	Control circuits	
	4.6	Auxiliary circuits	
	4.7	Releases	
	4.8	Integral fuses (integrally fused circuit-breakers)41	
	4.9	Switching overvoltages41	
5	Produ	uct information41	
	5.1	Nature of the information41	
	5.2	Marking41	
	5.3	Instructions for installation, operation and maintenance	
6	Norm	al service, mounting and transport conditions43	
7	Cons	tructional and performance requirements45	
	7.1	Constructional requirements45	
	7.2	Performance requirements47	
	7.3	Electromagnetic compatibility (EMC)59	
8	Tests	561	
	8.1	Kind of tests61	
	8.2	Compliance with constructional requirements63	
	8.3	Type tests	
	8.4	Routine tests	
	0		
		(normative) Coordination under short-circuit conditions between a eaker and another short-circuit protective device associated in the same circuit 129	
Anr	nex B ((normative) Circuit-breakers incorporating residual current protection147	
Anr	nex C	(normative) Individual pole short-circuit test sequence	
Anr	nex D	(informative) Clearances and creepage distances225	
Anr	nex E	(informative) Items subject to agreement between manufacturer and user 227	
		normative) Additional tests for circuit-breakers	
		ronic over-current protection229	
		(normative) Power loss311	
Anr	าex H เ	(normative) Test sequence for circuit-breakers for IT systems	

Annexe J (informative) Compatibilité électromagnétique (CEM) - Prescriptions et essais pour les disjoncteurs	
Annexe K (informative) Glossaire des symboles pour les produi	ts couverts
Annexe L (normative) Disjoncteurs ne satisfaisant pas aux pres concernant les protections de surintensité	criptions
Figure 1 – Installation d'essai (câbles de raccordement non repré	esentés)
pour essais de court-circuit	126
Figure A.1 – Coordination pour la surintensité entre un disjoncteu ou protection d'accompagnement par un fusible: caractéristiques	
Figure A.2 et Figure A.3 – Sélectivité totale entre deux disjoncteu	ırs140
Figure A.4 et Figure A.5 – Protection d'accompagnement par un Caractéristiques de fonctionnement	<u>-</u>
Figure A.6 – Exemple de circuit d'essai pour les essais de pouvo en court-circuit montrant les connexions d'un disjoncteur triphase	•
Figure B.1 – Circuit d'essai pour la vérification de la caractéristiq (voir B.8.2)	
Figure B.2 – Circuit d'essai pour la vérification de la valeur limite fonctionnement en cas de surintensités (voir B.8.5)	du courant de non-
Figure B.3 – Circuit d'essai pour vérification du comportement de selon B.3.1.2.2.1 (voir B.8.9)	s DPR classifiés
Figure B.4 – Onde de courant 0,5 μs/100 kHz	
Figure B.5 – Exemple de circuit d'essai pour la vérification de la aux déclenchements intempestifs	résistance
Figure B.6 – Onde de courant de choc 8/20 μs	
Figure B.7 – Circuit d'essai pour la vérification de la résistance a intempestifs en cas d'amorçage sans courant de suite (B.8.6.2).	ux déclenchements
Figure B.8 – Circuit d'essai pour la vérification du fonctionnemen dans le cas du courant différentiel continu pulsé (voir B.8.7.2.1, E	t correct du DPR
Figure B.9 – Circuit d'essai pour la vérification du fonctionnement dans le cas d'un courant résiduel continu pulsé auquel est super un courant résiduel continu lissé (voir B.8.7.2.4)	oosé
Figure B.10 – Dispositif d'essai pour les DPR autres que ceux uti des enveloppes métalliques spécifiées, pour vérifier l'immunité a	lisés dans ux
transitoires rapides électriques (voir B.8.12.1)	
dans une enveloppe métallique spécifiée pour vérifier l'immunité transitoires rapides électriques (voir B.8.12.1)	
Figure F.1 – Représentation du courant d'essai produit par des the selon F.4.1	nyristors tête-bêche 258
Figure F.2 – Circuit d'essai pour les essais d'émission, d'immunir aux creux de courant, aux décharges électrostatiques et aux cha rayonnés selon F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 et F.6.2 Configuration deux pôles de phase en série	mps électromagnétiques –
Figure F.3 – Circuit d'essai pour les essais d'émission, d'immuni- aux creux de courant, aux décharges électrostatiques et aux cha rayonnés selon F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 et F.6.2 Configuration trois pôles de phase en série	té aux harmoniques, mps électromagnétiques –
Figure F.4 – Circuit d'essai pour les essais d'émission, d'immunitaux creux de courant, aux décharges électrostatiques et aux cha rayonnés selon F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 et F.6.2	té aux harmoniques, mps électromagnétiques
Configuration trois phases	_ 264

Annex J (informative) Electromagnetic compatibility (EMC) – Annex K (informative) Glossary of symbols related to products covered Annex L (normative) Circuit-breakers not fulfilling the requirements Figure A.1 – Over-current coordination between a circuit-breaker and a fuse Figure A.4 and Figure A.5 – Back-up protection by a circuit-breaker – Operating characteristics......143 Figure A.6 – Example of test circuit for conditional short-circuit breaking capacity tests Figure B.1 – Test circuit for the verification of the operating characteristic (see B.8.2) 201 Figure B.2 – Test circuit for the verification of the limiting value of the non-operating current under over-current conditions (see B.8.5).......203 Figure B.3 – Test circuit for the verification of the behaviour of CBRs Figure B.4 – Current ring wave 0,5 μs/100 kHz207 Figure B.5 – Example of test circuit for the verification of resistance Figure B.6 – Surge current wave 8/20 μs211 Figure B.7 – Test circuit for the verification of resistance to unwanted tripping in case of flashover without follow-on current (B.8.6.2)213 Figure B.8 – Test circuit for the verification of the correct operation of CBRs, in the case Figure B.9 – Test circuit for the verification of the correct operation of CBRs, in the case of a residual pulsating direct current superimposed by a smooth direct residual current Figure B.10 – Test arrangements for CBRs other than those to be used in specified metallic enclosures, for verifying immunity to electrical fast transients Figure B.11 – Test arrangements for CBRs intended to be used in specified metallic Figure F.1 – Representation of test current produced by back-to-back thyristors Figure F.2 – Test circuit for emission tests, immunity to harmonics, current dips, electrostatic discharges and radiated electromagnetic fields in accordance with F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 and F.6.2 – Two-phase poles in series configuration........... 261 Figure F.3 – Test circuit for emission tests, immunity to harmonics, current dips, electrostatic discharges and radiated electromagnetic fields in accordance with F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 and F.6.2 – Three-phase poles in series configuration 263 Figure F.4 – Test circuit for emission tests, immunity to harmonics, current dips, electrostatic discharges and radiated electromagnetic fields in accordance with F.4.1.3,

Figure F.5 – Courant d'essai pour la vérification de l'influence des creux et des interruptions de courant selon F.4.2.1	266
Figure F.6 – EST monté dans une enveloppe métallique – Configuration deux pôles de phase en série selon F.4.3.1, F.4.5.1 et F.4.6.1	
Figure F.7 – EST monté dans une enveloppe métallique – Configuration trois pôles de phase en série selon F.4.3.1, F.4.5.1 et F.4.6.1	
Figure F.8 – EST monté dans une enveloppe métallique – Configuration trois phases selon F.4.3.1, F.4.5.1 et F.4.6.1	. 276-278
Figure F.9 – Installation d'essai pour la vérification de l'immunité aux décharges électrostatiques selon F.4.3.2	280
Figure F.10 – Installation d'essai pour l'immunité aux champs électromagnétiques rayons selon F.4.4.1	onnés 282
Figure F.11 – Circuit pour les essais d'immunité aux transitoires électriques rapides (EFT/B) selon F.4.5.1 et F.4.5.2 – Configuration deux pôles de phase en série	284
Figure F.12 – Circuit pour l'essai d'immunité aux transitoires électriques rapides (EFT) selon F.4.5.1 et F.4.5.2 – Configuration trois pôles de phase en série	•
Figure F.13 – Circuit pour l'essai d'immunité aux transitoires électriques rapides (EFT) selon F.4.5.1 et F.4.5.2 – Configuration trois phases	•
Figure F.14 – Installation d'essai pour l'essai d'immunité aux transitoires électriques rapides (EFT/B) selon F.4.5.2	290
Figure F.15 – Circuit d'essai pour la vérification de l'influence des ondes de choc sur le circuit principal (phase-terre) selon F.4.6.1 et F.4.6.2 – Configuration deux pôles de phase	292
Figure F.16 – Circuit d'essai pour la vérification de l'influence des ondes de choc sur le circuit principal (phase-terre) selon F.4.6.1 et F.4.6.2 – Configuration trois pôles de phase en série	294
Figure F.17 – Circuit d'essai pour la vérification de l'influence des ondes de choc sur le circuit principal (phase-terre) selon F.4.6.1 et F.4.6.2 – Configuration trois phases	296
Figure F.18 – Circuit d'essai pour la vérification de l'influence des ondes de choc de courant sur le circuit principal selon F.4.6.1 et F.4.6.2 – Configuration deux pôles de phase	298
Figure F.19 – Circuit d'essai pour la vérification de l'influence des ondes de choc de courant sur le circuit principal selon F.4.6.1 et F.4.6.2 –	200
Configuration trois pôles de phase en série	298
de courant sur le circuit principal selon F.4.6.1 et F.4.6.2 – Configuration trois phases	300
Figure F.21 – Installation d'essai pour les perturbations conduites, induites par les champs radioélectriques (mode commun) selon F.4.7.1 – Configuration deux pôles de phase en série	302
Figure F.22 – Installation d'essai pour les perturbations conduites, induites par les champs radioélectriques (mode commun) selon F.4.7.1 –	
Configuration trois pôles de phase en série	304
les champs radioélectriques (mode commun) selon F.4.7.1 – Configuration trois phase	
Figure F.24 – Installation d'essai d'émission rayonnée	308
Figure F.25 – Cycles de variation de température avec un taux de variation spécifié selon F.9.1	308
Figure G.1 – Exemple de mesure de la puissance dissipée selon G.2.1	
Figure G.2 – Exemple de mesure de la puissance dissipée selon G.2.2 et G.2.3	
Figure K.1 – Relation entre les symboles et les caractéristiques de déclenchement	326

Figure F.5 – Test current for the verification of the influence of the current dips and interruptions in accordance with F.4.2.1......267 Figure F.6 – EUT mounted in metallic enclosure – Two-phase poles in series configuration Figure F.7 – EUT mounted in metallic enclosure – Three-phase poles in series Figure F.8 – EUT mounted in metallic enclosure – Three-phase configuration Figure F.9 – Test set-up for the verification of immunity to electrostatic discharges Figure F.10 – Test set-up for immunity to radiated electromagnetic fields in accordance Figure F.11 – Circuit for electrical fast transient/burst (EFT/B) immunity test in accordance Figure F.12 – Circuit for electrical fast transient/burst (EFT/B) immunity test in accordance Figure F.13 – Circuit for electrical fast transient/burst (EFT/B) immunity test in accordance with F.4.5.1 and F.4.5.2 - Three-phase configuration.......289 Figure F.14 – Test set-up for electrical fast transient/burst (EFT/B) immunity test Figure F.15 – Test circuit for the verification of the influence of surges in the main circuit (line-to-earth) in accordance with F.4.6.1 and F.4.6.2 – Two-phase poles configuration....... 293 Figure F.16 – Test circuit for the verification of the influence of surges in the main circuit (line-to-earth) in accordance with F.4.6.1 and F.4.6.2 -Three-phase poles in series configuration295 Figure F.17 – Test circuit for the verification of the influence of surges in the main circuit (line-to-earth) in accordance with F.4.6.1 and F.4.6.2 – Three-phase configuration 297 Figure F.18 – Test circuit for the verification of the influence of current surges in the main circuit in accordance with F.4.6.1 and F.4.6.2 – Two-phase poles configuration 299 Figure F.19 – Test circuit for the verification of the influence of current surges in the main circuit in accordance with F.4.6.1 and F.4.6.2 -Three-phase poles in series configuration299 Figure F.20 – Test circuit for the verification of the influence of current surges in the main circuit in accordance with F.4.6.1 and F.4.6.2 – Three-phase configuration............ 301 Figure F.21 – Test set-up for conducted disturbances induced by radio-frequency fields (common mode) in accordance with F.4.7.1 – Two-phase poles in series configuration 303 Figure F.22 – Test set-up for conducted disturbances induced by radio-frequency fields (common mode) in accordance with F.4.7.1 – Three-phase poles in series configuration 305 Figure F.23 – Test set-up for conducted disturbances induced by radio-frequency fields Figure F.24 – Radiated emission test set-up.......309 Figure F.25 – Temperature variation cycles at a specified rate of change

Tableau 1 – Rapports normaux entre I _{cs} et I _{cu}	32
Tableau 2 – Rapport <i>n</i> entre le pouvoir de fermeture en court-circuit et le pouvoir de coupure en court-circuit et le facteur de puissance correspondant	
(pour les disjoncteurs à courant alternatif)	
Tableau 3 – Valeurs minimales du courant assigné de courte durée admissible	34
Tableau 4 – Catégories d'emploi	34
Tableau 5 – Valeurs préférentielles de la tension assignée d'alimentation de commande, si elle est différente de celle du circuit principal	36
Tableau 6 – Caractéristiques d'ouverture des déclencheurs d'ouverture à maximum de courant à temps inverse à la température de référence	52
Tableau 7 – Limites d'échauffement des bornes et des parties accessibles	54
Tableau 8 – Nombre de cycles de manoeuvres	5€
Tableau 9 – Schéma d'ensemble des séquences d'essais	
Tableau 9a – Séquences d'essais applicables en fonction de la relation entre I_{cs} , I_{cu} et I_{cw}	
Tableau 10 – Nombre d'échantillons pour les essais	
Tableau 11 – Valeurs des facteurs de puissance et des constantes de temps en fonction des courants d'essai	78
Tableau 12 – Tension d'essai diélectrique en fonction de la tension assignée d'isolement	94
Tableau 13 – Caractéristiques du circuit d'essai pour le fonctionnement en surcharge	102
Tableau B.1 – Caractéristique de fonctionnement pour le type non temporisé	156
Tableau B.2 – Caractéristique de fonctionnement pour le type temporisé ayant un temps limite de non-réponse de 0,06 s	158
Tableau B.3 – Prescriptions pour les DPR fonctionnellement dépendants de la tension d'alimentation	166
Tableau B.4 – Séquences d'essais supplémentaires	
Tableau B.5 – Gammes de courant de déclenchement pour les DPR	
dans le cas d'un défaut à la terre comprenant des composantes continues	184
Tableau F.1 – Prescriptions pour les essais de CEM	230
Tableau F.2 – Paramètres d'essais pour les creux et interruptions de courant	
Index alphabétique des essais	64

Table 1 – Standard ratios between I _{cs} and I _{cu}	3
Table 2 – Ratio n between short-circuit making capacity and short-circuit breaking capacity	
and related power factor (for a.c. circuit-breakers)3	3
Table 3 – Minimum values of rated short-time withstand current3	35
Table 4 – Utilization categories3	5
Table 5 – Preferred values of the rated control supply voltage, if different	
from that of the main circuit3	7
Table 6 – Characteristics of the opening operation of inverse time-delay over-current opening releases at the reference temperature	53
Table 7 – Temperature-rise limits for terminals and accessible parts	
Table 8 – Number of operating cycles5	
Table 9 – Overall schema of test sequences6	7
Table 9a – Applicability of test sequences according to the relationship	
between I_{cs} , I_{cu} and I_{cw} 6	
Table 10 – Number of samples for test	'5
Table 11 – Values of power factors and time constants corresponding to test currents7	'9
Table 12 – Dielectric test voltage corresponding to the rated insulation voltage9	
Table 13 – Test circuit characteristics for overload performance	13
Table B.1 – Operating characteristic for non-time-delay type15	7
Table B.2 – Operating characteristic for time-delay-type having a limiting	
non-actuating time of 0,06 s15	9
Table B.3 – Requirements for CBRs functionally dependent on line voltage	7
Table B.4 – Additional test sequences17	′5
Table B.5 – Tripping current range for CBRs in case of	
an earth fault comprising a d.c. component18	
Table F.1 – EMC test requirements	;1
Table F.2 – Test parameters for current dips and interruptions24	1
Alphabetical index of tests6	5

- 10 - 60947-2 © CEI:1995+A1:1997 +A2:2001

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

APPAREILLAGE À BASSE TENSION -

Partie 2: Disjoncteurs

AVANT-PROPOS

- 1) La CEI (Commission Électrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales. Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d'études.
- 3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés comme normes, spécifications techniques, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
- 4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.
- 5) La CEI n'a fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est déclaré conforme à l'une de ses normes.
- 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEI 60947-2 a été établie par le sous-comité 17B: Appareillage à basse tension, du comité d'études 17 de la CEI: Appareillage.

La présente version consolidée de la CEI 60947-2 est issue de la deuxième édition (1995) [documents 17B/636/FDIS et 17B/718/RVD], du corrigendum de mars 1997, de son amendement 1 (1997) [documents 17B/838/FDIS et 17B/857/RVD] et de son amendement 2 (2001) [documents 17B/1135/FDIS et 17B/1145/RVD].

Elle porte le numéro d'édition 2.2.

Une ligne verticale dans la marge indique où la publication de base a été modifiée par les amendements 1 et 2.

Les annexes A, B, C, F, G, H et L font partie intégrante de cette norme.

Les annexes D, E, J et K sont données uniquement à titre d'information.

Le comité a décidé que le contenu de la publication de base et de ses amendements ne sera pas modifié avant 2002. A cette date, la publication sera

- reconduite;
- supprimée;
- remplacée par une édition révisée, ou
- amendée.

+A2:2001

INTERNATIONAL ELECTROTECHNICAL COMMISSION

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

Part 2: Circuit-breakers

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical specifications, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60947-2 has been prepared by subcommittee 17B: Low-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

This consolidated version of IEC 60947-2 is based on the second edition (1995) [documents 17B/636/FDIS and 17B/718/RVD], the corrigendum of March 1997, its amendment 1 (1997) [documents 17B/838/FDIS and 17B/857/RVD] and its amendment 2 (2001) [documents 17B/1135/FDIS and 17B/1145/RVD].

It bears the edition number 2.2.

A vertical line in the margin shows where the base publication has been modified by amendments 1 and 2.

Annexes A, B, C, F, G, H and L form an integral part of this standard.

Annexes D, E, J and K are for information only.

The committee has decided that the contents of the base publication and its amendments will remain unchanged until 2002. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

- 12 - 60947-2 © CEI:1995+A1:1997 +A2:2001

APPAREILLAGE À BASSE TENSION -

Partie 2: Disjoncteurs

1 Généralités

Les dispositions des règles générales qui font l'objet de la première partie (CEI 60947-1) sont applicables à la présente norme lorsque celle-ci le précise. Les articles, paragraphes, tableaux, figures et annexes des règles générales qui sont ainsi applicables sont identifiés par référence à la première partie, par exemple: 1.2.3 de la première partie, tableau 4 de la première partie, ou annexe A de la première partie.

1.1 Domaine d'application et objet

La présente norme est applicable aux disjoncteurs dont les contacts principaux sont destinés à être reliés à des circuits dont la tension assignée ne dépasse pas 1 000 V en courant alternatif ou 1 500 V en courant continu; elle contient aussi des prescriptions supplémentaires pour les disjoncteurs à fusibles incorporés.

Elle est applicable quels que soient les courants assignés, les méthodes de construction et l'emploi prévu des disjoncteurs.

Les prescriptions pour les disjoncteurs qui sont aussi prévus pour assurer une protection contre les courants différentiels résiduels font l'objet de l'annexe B.

Les prescriptions supplémentaires pour les disjoncteurs à protection électronique font l'objet de l'annexe F.

Les prescriptions supplémentaires relatives aux disjoncteurs pour réseaux IT sont contenues dans l'annexe H.

Les prescriptions supplémentaires pour les disjoncteurs utilisés comme démarreurs directs sont données dans la CEI 60947-4-1, applicable aux contacteurs et aux démarreurs à basse tension.

Les prescriptions concernant les disjoncteurs destinés à la protection des installations électriques des bâtiments et à des emplois analogues et prévus pour être utilisés par des personnes non averties figurent dans la CEI 60898.

Les prescriptions relatives aux disjoncteurs pour le matériel (par exemple pour les appareils électriques) figurent dans la CEI 60934.

Des prescriptions particulières ou complémentaires peuvent être nécessaires pour certaines applications spécifiques (par exemple: traction, laminoirs, service à bord des navires).

NOTE Les disjoncteurs, objet de la présente norme, peuvent être munis de dispositifs provoquant l'ouverture automatique dans des conditions prédéterminées autres que la surintensité et la chute de tension, telles que, par exemple, l'inversion de la puissance ou du courant. La présente norme ne traite pas de la vérification du fonctionnement dans de telles conditions prédéterminées.

La présente norme a pour objet de fixer:

- a) les caractéristiques des disjoncteurs;
- b) les conditions auxquelles doivent répondre les disjoncteurs concernant:
 - 1) leur fonctionnement et leur tenue en service normal;
 - 2) leur fonctionnement et leur tenue en cas de surcharge et en cas de court-circuit, y compris la coordination en service (sélectivité et protection d'accompagnement);
 - leurs propriétés diélectriques;

LOW-VOLTAGE SWITCHGEAR AND CONTROLGEAR -

Part 2: Circuit-breakers

1 General

The provisions of the general rules dealt with in IEC 60947-1 (hereinafter referred to as Part 1) are applicable to this standard, where specifically called for. Clauses and subclauses, tables, figures and appendices of the general rules thus applicable are identified by reference to Part 1, for example, 1.2.3 of Part 1, table 4 of Part 1, or annex A of Part 1.

1.1 Scope and object

This standard applies to circuit-breakers, the main contacts of which are intended to be connected to circuits, the rated voltage of which does not exceed 1 000 V a.c. or 1 500 V d.c.; it also contains additional requirements for integrally fused circuit-breakers.

It applies whatever the rated currents, the method of construction or the proposed applications of the circuit-breakers may be.

The requirements for circuit-breakers which are also intended to provide earth-leakage protection are contained in annex B.

The additional requirements for circuit-breakers with electronic over-current protection are contained in annex F.

The additional requirements for circuit-breakers for IT systems are contained in annex H.

Supplementary requirements for circuit-breakers used as direct-on-line starters are given in IEC 60947-4-1, applicable to low-voltage contactors and starters.

The requirements for circuit-breakers for the protection of wiring installations in buildings and similar applications, and designed for use by uninstructed persons, are contained in IEC 60898.

The requirements for circuit-breakers for equipment (for example electrical appliances) are contained in IEC 60934.

For certain specific applications (for example traction, rolling mills, marine service) particular or additional requirements may be necessary.

NOTE Circuit-breakers which are dealt with in this standard may be provided with devices for automatic opening under predetermined conditions other than those of over-current and undervoltage as, for example, reversal of power or current. This standard does not deal with the verification of operation under such pre-determined conditions.

The object of this standard is to state:

- a) the characteristics of circuit-breakers;
- b) the conditions with which circuit-breakers shall comply with reference to:
 - operation and behaviour in normal service;
 - operation and behaviour in case of overload and operation and behaviour in case of short-circuit, including co-ordination in service (discrimination and back-up protection);
 - 3) dielectric properties;

- c) les essais destinés à vérifier si ces conditions sont remplies et les méthodes à adopter pour ces essais;
- d) les informations à marquer sur les appareils ou à fournir avec ceux-ci.

1.2 Références normatives

Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour cette partie de la CEI 60947. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondés sur cette partie de la CEI 60947 sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.

CEI 60050(441):1984, Vocabulaire Electrotechnique International (VEI) – Chapitre 441: Appareillage et fusibles

CEI 60068-2-14:1984, Essais d'environnement – Deuxième partie: Essais. Essai N: Variations de température

CEI 60068-2-30:1980, Essais d'environnement – Deuxième partie: Essais – Essai Db et guide: Essai cyclique de chaleur humide (cycle de 12+12 heures)

CEI 60112:1979, Méthode pour déterminer les indices de résistance et de tenue au cheminement des matériaux isolants solides dans des conditions humides

CEI 60269-1:1986, Fusibles basse tension – Première partie: Règles générales

CEI 60269-2-1:1987, Fusibles basse tension – Deuxième partie: Règles supplémentaires pour les fusibles destinés à être utilisés par des personnes habilitées (fusibles pour usages essentiellement industriels)

CEI 60269-3:1987, Fusibles basse tension – Troisième partie: Règles supplémentaires pour les fusibles destinés à être utilisés par des personnes non qualifiées (fusibles pour usages essentiellement domestiques et analogues)

CEI 60364: Installations électriques des bâtiments

CEI 60364-4-41:1982, Installations électriques des bâtiments – Quatrième partie: Protection pour assurer la sécurité. Chapitre 41: Protection contre les chocs électriques

CEI 60410:1973, Plans et règles d'échantillonnage pour les contrôles par attributs

CEI 60695-2-1/0:1994, Essais relatifs aux risques du feu — Partie 2: Méthodes d'essai — Section 1/feuille 0: Méthodes d'essai au fil incandescent — Généralités

CEI 60695-2-1/1:1994, Essais relatifs aux risques du feu – Partie 2: Méthodes d'essai – Section 1/feuille 1: Essai au fil incandescent sur produits finis et guide

CEI 60695-2-1/2:1994, Essais relatifs aux risques du feu – Partie 2: Méthodes d'essai – Section 1/feuille 2: Essai d'inflammabilité au fil incandescent sur matériaux

CEI 60695-2-1/3:1994, Essais relatifs aux risques du feu – Partie 2: Méthodes d'essai – Section 1/feuille 3: Essai d'allumabilité au fil incandescent sur matériaux

CEI 60755:1983, Règles générales pour les dispositifs de protection à courant différentiel résiduel

CEI 60898, Disjoncteurs pour installations domestiques et analogues pour la protection contre les surintensités

CEI 60934, Disjoncteurs pour équipement (DPE)

CEI 60947-1:1999, Appareillage à basse tension – Partie 1: Règles générales

60947-2 © IEC:1995+A1:1997 +A2:2001

- c) tests intended for confirming that these conditions have been met and the methods to be adopted for these tests;
- d) information to be marked on or given with the apparatus.

1.2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of IEC 60947. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this part of IEC 60947 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 60050(441):1984, International Electrotechnical Vocabulary (IEV) – Chapter 441: Switchgear, controlgear and fuses

IEC 60068-2-14:1984, Environmental testing – Part 2: Tests. Test N: Change of temperature

IEC 60068-2-30:1980, Environmental testing – Part 2: Tests – Test Db and guidance: Damp heat, cyclic (12+12-hour cycle)

IEC 60112:1979, Method for determining the comparative and the proof tracking indices of solid insulating materials under moist conditions

IEC 60269-1:1986, Low-voltage fuses - Part 1: General requirements

IEC 60269-2-1:1987, Low-voltage fuses – Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application)

IEC 60269-3:1987, Low-voltage fuses – Part 3: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications)

IEC 60364, Electric installations of buildings

IEC 60364-4-41:1982, Electric installations of buildings – Part 4: Protection for safety – Chapter 41: Protection against shock

IEC 60410:1973, Sampling plans and procedures for inspection

IEC 60695-2-1/0:1994, Fire hazard testing – Part 2: Test methods – Section 1/sheet 0: Glow-wire test methods – General

IEC 60695-2-1/1:1994, Fire hazard testing – Part 2: Test methods – Section 1/sheet 1: Glow-wire end-product test and guidance

IEC 60695-2-1/2:1994, Fire hazard testing – Part 2: Test methods – Section 1/sheet 2: Glow-wire flammability test on materials

IEC 60695-2-1/3:1994, Fire hazard testing – Part 2: Test methods – Section 1/sheet 3: Glow-wire ignitability test on materials

IEC 60755:1983, General requirements for residual current operated protective devices

IEC 60898, Circuit-breakers for over-current protection for household and similar installations

IEC 60934, Circuit-breakers for equipment (CBE)

IEC 60947-1:1999, Low-voltage switchgear and controlgear - Part 1: General rules

+A2:2001

CEI 60947-4-1:1990, Appareillage à basse tension – Quatrième partie: Contacteurs et démarreurs de moteurs – Section un: Contacteurs et démarreurs électromécaniques

CEI 61000-3-2:2000, Compatibilité électromagnétique (CEM) – Partie 3-2: Limites – Limites pour les émissions de courant harmonique (courant appelé par les appareils ≤16 A par phase)

CEI 61000-3-3:1994, Compatibilité électromagnétique (CEM) – Partie 3: Limites – Section 3: Limitation des fluctuations de tension et du flicker dans les réseaux basse tension pour les équipements ayant un courant appelé ≤16 A

CEI 61000-4-2:1995, Compatibilité électromagnétique (CEM) – Partie 4: Techniques d'essai et de mesure – Section 2: Essai d'immunité aux décharges électrostatiques

CEI 61000-4-3:1995, Compatibilité électromagnétique (CEM) — Partie 4: Techniques d'essai et de mesure — Section 3: Essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques

CEI 61000-4-4:1995, Compatibilité électromagnétique (CEM) — Partie 4: Techniques d'essai et de mesure — Section 4: Essais d'immunité aux transitoires électriques rapides en salves

CEI 61000-4-5:1995, Compatibilité électromagnétique (CEM) – Partie 4: Techniques d'essai et de mesure – Section 5: Essai d'immunité aux ondes de choc

CEI 61000-4-6:1996, Compatibilité électromagnétique (CEM) — Partie 4: Techniques d'essai et de mesure — Section 6: Immunité aux perturbations conduites, induites par les champs radioélectriques

CEI 61000-4-11:1994, Compatibilité électromagnétique (CEM) – Partie 4: Techniques d'essai et de mesure – Section 11: Essais d'immunité aux creux de tension, coupures brèves et variations de tension

CEI 61000-5-2:1997, Compatibilité électromagnétique (CEM) – Partie 5: Guides d'installation et d'atténuation – Section 2: Mise à la terre et câblage

CEI 61008-1:1990, Interrupteurs automatiques à courant différentiel résiduel pour usages domestiques et analogues sans dispositif de protection contre les surintensités incorporé (ID) – Partie 1: Règles générales

CEI 61009-1:1991, Interrupteurs automatiques à courant différentiel résiduel avec protection contre les surintensités incorporée pour installations domestiques et analogues (DD) – Partie 1: Règles générales

CISPR 11:1997, Appareils industriels, scientifiques et médicaux (ISM) à fréquence radioélectrique – Caractéristiques de perturbations électromagnétiques – Limites et méthodes de mesure

CISPR 22:1997, Appareils de traitement de l'information – Caractéristiques des perturbations radioélectriques – Limites et méthodes de mesure

2 Définitions

Pour la majorité des définitions se rapportant à la présente norme, voir l'article 2 de la première partie.

Dans le cadre de cette norme, les définitions complémentaires suivantes sont applicables.

NOTE Lorsque ces définitions sont identiques à celles du Vocabulaire Electrotechnique International (VEI), CEI 60050(441), la référence au VEI est donnée entre parenthèses.

- IEC 60947-4-1:1990, Low-voltage switchgear and controlgear Part 4: Contactors and motor-starters Section One: Electromechanical contactors and motors-starters
- IEC 61000-3-2:2000, Electromagnetic compatibility (EMC) Part 3-2: Limits Limits for harmonic current emissions (equipment input current ≤16 A per phase)
- IEC 61000-3-3:1994, Electromagnetic compatibility (EMC) Part 3: Limits Section 3: Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current ≤16 A
- IEC 61000-4-2:1995, Electromagnetic compatibility Part 4: Testing and measurement techniques Section 2: Electrostatic discharge immunity test
- IEC 61000-4-3:1995, Electromagnetic compatibility Part 4: Testing and measurement techniques Section 3: Radiated, radio-frequency, electromagnetic field immunity test
- IEC 61000-4-4:1995, Electromagnetic compatibility Part 4: Testing and measurement techniques Section 4: Electrical fast transient/burst immunity test
- IEC 61000-4-5:1995, Electromagnetic compatibility Part 4: Testing and measurement techniques Section 5: Surge immunity test
- IEC 61000-4-6:1996, Electromagnetic compatibility (EMC) Part 4: Testing and measurement techniques Section 6: Immunity to conducted disturbances, induced by radiofrequency fields
- IEC 61000-4-11:1994, Electromagnetic compatibility (EMC) Part 4: Testing and measuring techniques Section 11: Voltage dips, short interruptions and voltage variation immunity tests
- IEC 61000-5-2:1997, Electromagnetic compatibility (EMC) Part 5: Installation and mitigation guidelines Section 2: Earthing and cabling
- IEC 61008-1:1990, Residual current operated circuit-breakers without integral over-current protection for household and similar uses (RCCB's) Part 1: General rules
- IEC 61009-1:1991, Residual current operated circuit-breakers with integral over-current protection for household and similar uses (RCBO's) Part 1: General rules
- CISPR 11:1997, Industrial, scientific and medical (ISM) radio-frequency equipment Electromagnetic disturbance characteristics Limits and method of measurement
- CISPR 22:1997, Information technology equipment Radio disturbance characteristics Limits and method of measurement

2 Definitions

For the majority of the definitions required in connection with this standard, see Clause 2 of Part 1.

For the purpose of this standard, the following additional definitions shall apply:

NOTE Where these definitions are taken unchanged from the International Electrotechnical Vocabulary (IEV), IEC 60050(441), the IEV reference is given in brackets.

60947-2 © CEI:1995+A1:1997

+A2:2001

2.1

disjoncteur

appareil mécanique de connexion capable d'établir, de supporter et d'interrompre des courants dans les conditions normales du circuit, ainsi que d'établir, de supporter pendant une durée spécifiée et d'interrompre des courants dans des conditions anormales spécifiées du circuit telles que celles du court-circuit

– 18 –

[VEI 441-14-20]

2.1.1

taille

terme désignant un groupe de disjoncteurs dont les dimensions extérieures physiques sont communes à une gamme de courants assignés. La taille est exprimée en ampères correspondant au courant assigné le plus élevé du groupe. Dans une taille, la largeur de l'appareil peut varier selon le nombre de pôles

NOTE Cette définition n'implique pas de normalisation dimensionnelle.

2.1.2

différence constructive

différence significative de construction entre des disjoncteurs d'une taille donnée, nécessitant de faire des essais supplémentaires de type (voir 7.1.5)

2.2

disjoncteur à fusibles incorporés

combinaison en un seul appareil d'un disjoncteur et de fusibles, un fusible étant placé en série avec chaque pôle du disjoncteur destiné à être relié à un conducteur de phase

[VEI 441-14-22]

2.3

disjoncteur limiteur de courant

disjoncteur dont la durée de coupure est particulièrement brève en vue d'obtenir que le courant de court-circuit ne puisse atteindre son amplitude maximale

[VEI 441-14-21]

2.4

disjoncteur enfichable

disjoncteur qui, outre ses contacts d'interruption, possède un jeu de contacts permettant le retrait du disjoncteur

NOTE Certains disjoncteurs peuvent être de type enfichable sur le côté d'alimentation uniquement, les bornes de sortie étant les bornes utilisées habituellement pour raccordement par conducteurs.

2.5

disjoncteur débrochable

disjoncteur qui, outre ses contacts d'interruption, possède un jeu de contacts de sectionnement lui permettant, en position débrochée, d'être débranché du circuit principal avec une distance de sectionnement conforme à des prescriptions spécifiées

2.6

disjoncteur en boîtier moulé

disjoncteur dont le châssis et l'enveloppe sont en matériau isolant moulé et font partie intégrante du disjoncteur

[VEI 441-14-24]

2.7

disjoncteur à air

disjoncteur dont les contacts s'ouvrent et se ferment dans l'air à la pression atmosphérique

[VEI 441-14-27]

+A2:2001

2.1

circuit-breaker

a mechanical switching device, capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short-circuit

[IEV 441-14-20]

2.1.1

frame size

a term designating a group of circuit-breakers, the external physical dimensions of which are common to a range of current ratings. Frame size is expressed in amperes corresponding to the highest current rating of the group. Within a frame size, the width may vary according to the number of poles

NOTE This definition does not imply dimensional standardization.

2.1.2

construction break

a significant difference in construction between circuit-breakers of a given frame size, requiring additional type testing (see 7.1.5)

2.2

integrally fused circuit-breaker

a combination, in a single device, of a circuit-breaker and fuses, one fuse being placed in series with each pole of the circuit-breaker intended to be connected to a phase conductor

[IEV 441-14-22]

2.3

current-limiting circuit-breaker

a circuit-breaker with a break-time short enough to prevent the short-circuit current reaching its otherwise attainable peak value

[IEV 441-14-21]

2.4

plug-in circuit-breaker

a circuit-breaker which, in addition to its interrupting contacts, has a set of contacts which enable the circuit-breaker to be removed

NOTE Some circuit-breakers may be of the plug-in type on the line side only, the load terminals being usually suitable for wiring connection.

2.5

withdrawable circuit-breaker

a circuit-breaker which, in addition to its interrupting contacts, has a set of isolating contacts which enable the circuit-breaker to be disconnected from the main circuit, in the withdrawn position, to achieve an isolating distance in accordance with specified requirements

2.6

moulded-case circuit-breaker

a circuit-breaker having a supporting housing of moulded insulating material forming an integral part of the circuit-breaker

[IEV 441-14-24]

2.7

air circuit-breaker

a circuit-breaker in which the contacts open and close in air at atmospheric pressure

[IEV 441-14-27]

60947-2 © CEI:1995+A1:1997 +A2:2001

2.8

disjoncteur à vide

disjoncteur dont les contacts s'ouvrent et se ferment dans une enceinte où règne un vide poussé [VEI 441-14-29]

2.9

disjoncteur à gaz

disjoncteur dont les contacts s'ouvrent et se ferment dans un gaz autre que l'air à une pression égale ou supérieure à la pression atmosphérique

2.10

déclencheur sous courant de fermeture

déclencheur qui permet l'ouverture d'un disjoncteur sans retard intentionnel, pendant une manoeuvre de fermeture, si le courant établi dépasse une valeur prédéterminée, et qui est rendu inopérant lorsque le disjoncteur est en position de fermeture

2.11

déclencheur de court-circuit

déclencheur à maximum de courant destiné à la protection contre les courts-circuits

2.12

déclencheur de court-circuit à retard de courte durée

déclencheur de court-circuit destiné à fonctionner à la fin du retard de courte durée (voir 2.5.26 de la première partie)

2.13

interrupteur de défaut

interrupteur auxiliaire ne fonctionnant que lors du déclenchement du disjoncteur auquel il est associé

2.14

disjoncteur à fermeture empêchée

disjoncteur dont chacun des contacts mobiles est empêché de se fermer suffisamment pour être capable de laisser passer le courant si l'ordre de fermeture est donné alors que demeurent maintenues des conditions spécifiées

2.15

pouvoir de coupure (ou de fermeture) en court-circuit

pouvoir de coupure (ou de fermeture) pour lequel les conditions prescrites comprennent un court-circuit

2.15.1

pouvoir de coupure ultime en court-circuit

pouvoir de coupure pour lequel les conditions prescrites suivant une séquence d'essais spécifiée ne comprennent pas l'aptitude du disjoncteur à être parcouru en permanence par son courant assigné

2.15.2

pouvoir de coupure de service en court-circuit

pouvoir de coupure pour lequel les conditions prescrites suivant une séquence d'essais spécifiée comprennent l'aptitude du disjoncteur à être parcouru en permanence par son courant assigné

2.16

durée d'ouverture

le 2.5.39 de la première partie est applicable avec les compléments suivants:

997 – 21 –

2.8

vacuum circuit-breaker

a circuit-breaker in which the contacts open and close within a highly evacuated envelope [IEV 441-14-29]

2.9

gas circuit-breaker

a circuit-breaker in which the contacts open and close in a gas other than air at atmospheric or higher pressure

2.10

making-current release

a release which permits a circuit-breaker to open, without any intentional time-delay, during a closing operation, if the making current exceeds a predetermined value, and which is rendered inoperative when the circuit-breaker is in the closed position

2.11

short-circuit release

an over-current release intended for protection against short circuits

2.12

short-time delay short-circuit release

an over-current release intended to operate at the end of the short-time delay (see 2.5.26 of Part 1)

2.13

alarm switch

an auxiliary switch which operates only upon the tripping of the circuit-breaker with which it is associated

2.14

circuit-breaker with lock-out device preventing closing

a circuit-breaker in which each of the moving contacts is prevented from closing sufficiently to be capable of passing current if the closing command is initiated while specified conditions remain established

2.15

short-circuit breaking (or making) capacity

a breaking (or making) capacity for which the prescribed conditions include a short circuit

2.15.1

ultimate short-circuit breaking capacity

a breaking capacity for which the prescribed conditions according to a specified test sequence do not include the capability of the circuit-breaker to carry its rated current continuously

2.15.2

service short-circuit breaking capacity

a breaking capacity for which the prescribed conditions according to a specified test sequence include the capability of the circuit-breaker to carry its rated current continuously

2.16

opening time

subclause 2.5.39 of Part 1 applies, with the following additions:

60947-2 © CEI:1995+A1:1997 +A2:2001

- dans le cas d'un disjoncteur actionné directement, l'instant de début de la durée d'ouverture est l'instant de début d'un courant assez fort pour provoquer la manoeuvre du disjoncteur;
- dans le cas d'un disjoncteur actionné par toute forme d'énergie auxiliaire, l'instant de début de la durée d'ouverture est l'instant de début de l'application ou du retrait de l'énergie auxiliaire au déclencheur d'ouverture.

NOTE Pour les disjoncteurs, la «durée d'ouverture» est couramment appelée «durée de déclenchement», bien que, à proprement parler, la durée de déclenchement comprenne le délai entre l'instant où commence la durée d'ouverture et celui où la commande de l'ouverture devient irréversible.

2.17

coordination pour la protection contre les surintensités

le 2.5.22 de la première partie est applicable

2.17.1

sélectivité lors d'une surintensité

le 2.5.23 de la première partie est applicable

[VEI 441-17-15]

2.17.2

sélectivité totale

sélectivité lors d'une surintensité dans laquelle, en présence de deux dispositifs de protection à maximum de courant placés en série, le dispositif de protection aval assure la protection sans provoquer le fonctionnement de l'autre dispositif de protection

2.17.3

sélectivité partielle

sélectivité lors d'une surintensité dans laquelle, en présence de deux dispositifs de protection à maximum de courant placés en série, le dispositif de protection aval assure la protection jusqu'à un niveau donné de surintensité sans provoquer le fonctionnement de l'autre dispositif de protection

2.17.4

courant limite de sélectivité (I_s)

le courant limite de sélectivité est la valeur de courant correspondant à l'intersection de la caractéristique totale temps-courant du dispositif de protection placé en aval avec la caractéristique temps-courant de préarc (pour les fusibles) ou de déclenchement (pour les disjoncteurs) de l'autre dispositif de protection

Le courant limite de sélectivité (voir figure A.1) est une valeur limite de courant

- en dessous de laquelle, en présence de deux dispositifs de protection à maximum de courant placés en série, le dispositif de protection aval achève sa manoeuvre de coupure en temps voulu pour empêcher l'autre dispositif de protection d'amorcer sa manoeuvre (c'està-dire que la sélectivité est assurée);
- au-dessus de laquelle, en présence de deux dispositifs de protection à maximum de courant placés en série, le dispositif de protection aval peut ne pas achever sa manoeuvre de coupure en temps voulu pour empêcher l'autre dispositif de protection d'amorcer sa manoeuvre (c'est-à-dire que la sélectivité n'est pas assurée).

2.17.5

protection d'accompagnement

le 2.5.24 de la première partie est applicable

2.17.6

courant d'intersection (I_B)

le 2.5.25 de la première partie est développé comme suit:

60947-2 © IEC:1995+A1:1997 +A2:2001

- in the case of a directly operated circuit-breaker, the instant of initiation of the opening time is the instant of initiation of a current large enough to cause the circuit-breaker to operate;
- in the case of a circuit-breaker operated by any form of auxiliary power, the instant of initiation of the opening time is the instant of application or removal of the auxiliary power to the opening release.

NOTE For circuit-breakers "opening time" is commonly referred to as "tripping time", although, strictly speaking, tripping time applies to the time between the instant of initiation of the opening time and the instant when the opening command becomes irreversible.

2.17

over-current protective co-ordination

subclause 2.5.22 of Part 1 applies

2.17.1

over-current discrimination

subclause 2.5.23 of Part 1 applies

[IEV 441-17-15]

2.17.2

total discrimination (total selectivity)

over-current discrimination where, in the presence of two over-current protective devices in series, the protective device on the load side effects the protection without causing the other protective device to operate

2.17.3

partial discrimination (partial selectivity)

over-current discrimination where, in the presence of two over-current protective devices in series, the protective device on the load side effects the protection up to a given level of over-current, without causing the other protective device to operate

2.17.4

selectivity limit current (I_s)

the selectivity limit current is the current co-ordinate of the intersection between the total time-current characteristic of the protective device on the load side and the pre-arcing (for fuses), or tripping (for circuit-breakers) time-current characteristic of the other protective device

The selectivity limit current (see figure A.1) is a limiting value of current.

- below which, in the presence of two over-current protective devices in series, the protective device on the load side completes its breaking operation in time to prevent the other protective device from starting its operation (i.e. selectivity is ensured);
- above which, in the presence of two over-current protective devices in series, the protective
 device on the load side may not complete its breaking operation in time to prevent the other
 protective device from starting its operation (i.e. selectivity is not ensured).

2.17.5

back-up protection

subclause 2.5.24 of Part 1 applies

2.17.6

take-over current (IB)

subclause 2.5.25 of Part 1 is amplified as follows:

60947-2 © CEI:1995+A1:1997 +A2:2001

Pour les besoins de cette norme, le 2.5.25 de la première partie s'applique à deux dispositifs de protection à maximum de courant placés en série pour des temps de fonctionnement ≥0,05 s. Pour des temps de fonctionnement <0,05 s, les deux dispositifs de protection à maximum de courant placés en série sont considérés comme une association. Voir annexe A.

NOTE Le courant d'intersection est la coordonnée du courant correspondant à l'intersection des courbes donnant les caractéristiques de la durée maximale de coupure en fonction du courant pour deux dispositifs de protection à maximum du courant placés en série.

2.18

caractéristique 12t d'un disjoncteur

information (généralement une courbe) donnant les valeurs maximales de I^2t correspondant à la durée de coupure en fonction du courant présumé (valeur efficace de la composante périodique en courant alternatif) jusqu'à la valeur maximale du courant présumé correspondant au pouvoir assigné de coupure en court-circuit à la tension correspondante

3 Classification

Les disjoncteurs peuvent être classés:

- 3.1 Suivant leur catégorie d'emploi, A ou B (voir 4.4).
- 3.2 Suivant le milieu de coupure, par exemple:
- coupure dans l'air;
- coupure sous vide;
- coupure dans un gaz.
- 3.3 Suivant le type de conception, par exemple:
- construction ouverte;
- construction en boîtier moulé.
- 3.4 Suivant le mode de commande du mécanisme de manoeuvre, c'est-à-dire:
- manoeuvre dépendante à main;
- manoeuvre indépendante à main;
- manoeuvre dépendante à source d'énergie extérieure;
- manoeuvre indépendante à source d'énergie extérieure;
- manoeuvre à accumulation d'énergie.
- 3.5 Suivant l'aptitude au sectionnement:
- apte au sectionnement;
- inapte au sectionnement.
- 3.6 Suivant les possibilités d'entretien:
- disjoncteurs conçus pour être entretenus;
- disjoncteurs conçus pour ne pas être entretenus.
- 3.7 Suivant le mode d'installation, par exemple:
- disjoncteurs fixes;
- disjoncteurs enfichables;
- disjoncteurs débrochables.
- 3.8 Suivant le degré de protection procuré par l'enveloppe (voir 7.1.11 de la première partie).

-25-

For the purpose of this standard, 2.5.25 of Part 1 applies to two over-current protective devices in series for operating times ≥ 0.05 s. For operating times < 0.05 s the two over-current devices in series are considered as an association, see annex A.

NOTE The take-over current is the current co-ordinate of the intersection between the maximum break time current characteristics of two over-current protective devices in series.

2.18

I²t characteristic of a circuit-breaker

information (usually a curve) giving the maximum values of I^2t related to break time as a function of prospective current (r.m.s. symmetrical for a.c.) up to the maximum prospective current corresponding to the rated short-circuit breaking capacity and associated voltage

3 Classification

Circuit-breakers may be classified:

- 3.1 According to their utilization category, A or B (see 4.4).
- 3.2 According to the interrupting medium, for example:
- air-break;
- vacuum break;
- gas-break.
- 3.3 According to the design, for example:
- open construction;
- moulded case.
- 3.4 According to the method of controlling the operating mechanism, viz:
- dependent manual operation;
- independent manual operation;
- dependent power operation;
- independent power operation;
- stored energy operation.
- 3.5 According to the suitability for isolation:
- suitable for isolation;
- not suitable for isolation.
- 3.6 According to the provision for maintenance:
- maintainable;
- non-maintainable.
- 3.7 According to the method of installation, for example:
- fixed;
- plug-in;
- withdrawable.
- 3.8 According to the degree of protection provided by the enclosure (see 7.1.11 of Part 1).

60947-2 © CEI:1995+A1:1997 +A2:2001

4 Caractéristiques des disjoncteurs

4.1 Enumération des caractéristiques

Les caractéristiques d'un disjoncteur doivent, chaque fois que cela est possible, être indiquées de la façon suivante:

- type du disjoncteur (4.2);
- valeurs assignées et valeurs limites du circuit principal (4.3);
- catégories d'emploi (4.4);
- circuits de commande (4.5);
- circuits auxiliaires (4.6);
- déclencheurs (4.7);
- fusibles incorporés (disjoncteurs à fusibles incorporés) (4.8);
- surtensions de manoeuvre (4.9).

4.2 Type du disjoncteur

Il est nécessaire d'indiquer:

4.2.1 Le nombre de pôles

4.2.2 La nature du courant

La nature du courant (courant alternatif ou courant continu) et, dans le cas du courant alternatif, le nombre de phases et la fréquence assignée.

4.3 Valeurs assignées et valeurs limites du circuit principal

Les valeurs assignées relatives à un disjoncteur doivent être indiquées conformément aux 4.3.1 à 4.4, mais il n'est pas nécessaire de spécifier toutes les valeurs assignées énumérées.

4.3.1 Tensions assignées

Un disjoncteur est défini par les tensions assignées suivantes:

4.3.1.1 Tension assignée d'emploi (U_e)

Le 4.3.1.1 de la première partie est applicable avec le développement suivant:

Disjoncteurs répondant au point a) de la note 2:

 $U_{\rm e}$ est généralement exprimé par la tension entre phases.

NOTE A $\$ Au Canada et aux Etats-Unis, la tension assignée de fonctionnement $\ U_e$ est exprimée par:

- a) la tension entre phases et la terre, ainsi que par la tension entre phases (par exemple 277/480 V) pour des réseaux triphasés à quatre fils et neutre mis à la terre;
- b) la tension entre phases (par exemple 480 V) pour des réseaux triphasés, à trois fils, non reliés à la terre ou reliés à la terre par une impédance.

Les disjoncteurs pour systèmes non reliés à la terre ou pour systèmes reliés à la terre par une impédance requièrent des essais supplémentaires conformément à l'annexe H.

- Disjoncteurs répondant au point b) de la note 2:

Ces disjoncteurs demandent des essais supplémentaires conformes à l'annexe C.

 $U_{\rm e}$ doit s'exprimer par la tension entre phases, précédée de la lettre C.

NOTE B Dans la pratique actuelle au Canada et aux Etats-Unis, les disjoncteurs répondant au point b) de la note 2 ne sont identifiés que par la tension entre phases.

60947-2 © IEC:1995+A1:1997 +A2:2001

4 Characteristics of circuit-breakers

4.1 Summary of characteristics

The characteristics of a circuit-breaker shall be stated in terms of the following, as applicable:

- type of circuit-breaker (4.2);
- rated and limiting values of the main circuit (4.3);
- utilization categories (4.4);
- control circuits (4.5);
- auxiliary circuits (4.6);
- releases (4.7);
- integral fuses (integrally fused circuit-breakers) (4.8);
- switching overvoltages (4.9).

4.2 Type of circuit-breaker

The following shall be stated:

4.2.1 Number of poles

4.2.2 Kind of current

Kind of current (a.c. or d.c.) and, in the case of a.c., number of phases and rated frequency.

4.3 Rated and limiting values of the main circuit

The rated values established for a circuit-breaker shall be stated in accordance with 4.3.1 to 4.4, but it is not necessary to establish all the rated values listed.

4.3.1 Rated voltages

A circuit-breaker is defined by the following rated voltages:

4.3.1.1 Rated operational voltage (U_e)

Subclause 4.3.1.1 of Part 1 applies with the following amplification:

Circuit-breakers covered by item a) of note 2:

 $U_{\rm e}$ is generally stated as the voltage between phases.

NOTE A In Canada and the USA, the rated operational voltage U_a is stated as

- a) the voltage between phases and earth, together with the voltage between phases (for example 277/480 V) for three-phase four-wire neutral earthed systems;
- b) the voltage between phases (for example 480 V) for three-phase three-wire unearthed or impedance earthed systems.

Circuit-breakers for unearthed or impedance earthed systems (IT) require additional tests according to annex H.

Circuit-breakers covered by item b) of note 2:

These circuit-breakers require additional tests according to annex C.

 $U_{\rm e}$ shall be stated as the voltage between phases preceded by the letter C.

NOTE B According to present practice in Canada and the USA, circuit-breakers covered by item b) of note 2 are identified by the voltage between phases only.

60947-2 © CEI:1995+A1:1997 +A2:2001

4.3.1.2 Tension assignée d'isolement (U_1)

Le 4.3.1.2 de la première partie est applicable.

4.3.1.3 Tension assignée de tenue aux chocs (U_{imp})

Le 4.3.1.3 de la première partie est applicable.

4.3.2 Courants

Un disjoncteur est défini par les courants suivants:

4.3.2.1 Courant thermique conventionnel à l'air libre (Ith)

Le 4.3.2.1 de la première partie est applicable.

4.3.2.2 Courant thermique conventionnel sous enveloppe (I_{the})

Le 4.3.2.2 de la première partie est applicable.

4.3.2.3 Courant assigné (I_n)

Pour les disjoncteurs, le courant assigné est le courant assigné ininterrompu (I_u) (voir 4.3.2.4 de la première partie) et a la même valeur que le courant thermique conventionnel à l'air libre (I_{th}).

4.3.2.4 Courant assigné des disjoncteurs tétrapolaires

Le 7.1.8 de la première partie est applicable.

4.3.3 Fréquence assignée

Le 4.3.3 de la première partie est applicable.

4.3.4 Service assigné

Les services assignés considérés comme normaux sont les suivants:

4.3.4.1 Service de 8 h

Le 4.3.4.1 de la première partie est applicable.

4.3.4.2 Service ininterrompu

Le 4.3.4.2 de la première partie est applicable.

4.3.5 Caractéristiques de court-circuit

4.3.5.1 Pouvoir assigné de fermeture en court-circuit (I_{cm})

Le pouvoir assigné de fermeture en court-circuit d'un disjoncteur est la valeur de pouvoir de fermeture en court-circuit fixée pour ce disjoncteur par le constructeur pour la tension assignée d'emploi, à la fréquence assignée et pour un facteur de puissance spécifié en courant alternatif, ou une constante de temps spécifiée en courant continu. Il s'exprime par la valeur maximale de crête du courant présumé.

En courant alternatif, le pouvoir assigné de fermeture en court-circuit d'un disjoncteur ne doit pas être inférieur au produit de son pouvoir assigné de coupure ultime en court-circuit multiplié par le facteur *n* figurant au tableau 2 (voir 4.3.5.3).

60947-2 © IEC:1995+A1:1997 +A2:2001

4.3.1.2 Rated insulation voltage (U_i)

Subclause 4.3.1.2 of Part 1 applies.

4.3.1.3 Rated impulse withstand voltage (U_{imp})

Subclause 4.3.1.3 of Part 1 applies.

4.3.2 Currents

A circuit-breaker is defined by the following currents:

4.3.2.1 Conventional free-air thermal current (I_{th})

Subclause 4.3.2.1 of Part 1 applies.

4.3.2.2 Conventional enclosed thermal current (Ithe)

Subclause 4.3.2.2 of Part 1 applies.

4.3.2.3 Rated current (I_n)

For circuit-breakers, the rated current is the rated uninterrupted current (I_u) (see 4.3.2.4 of Part 1) and is equal to the conventional free-air thermal current (I_{th}) .

4.3.2.4 Current rating for four-pole circuit-breakers

Subclause 7.1.8 of Part 1 applies.

4.3.3 Rated frequency

Subclause 4.3.3 of Part 1 applies.

4.3.4 Rated duty

The rated duties considered as normal are as follows:

4.3.4.1 Eight-hour duty

Subclause 4.3.4.1 of Part 1 applies.

4.3.4.2 Uninterrupted duty

Subclause 4.3.4.2 of Part 1 applies.

4.3.5 Short-circuit characteristics

4.3.5.1 Rated short-circuit making capacity (I_{cm})

The rated short-circuit making capacity of a circuit-breaker is the value of short-circuit making capacity assigned to that circuit-breaker by the manufacturer for the rated operational voltage at rated frequency and at a specified power factor for a.c., or time constant for d.c. It is expressed as the maximum prospective peak current.

For a.c. the rated short-circuit making capacity of a circuit-breaker shall be not less than its rated ultimate short-circuit breaking capacity, multiplied by the factor n of table 2 (see 4.3.5.3).

+A2:2001

En courant continu, le pouvoir assigné de fermeture en court-circuit d'un disjoncteur ne doit pas être inférieur à son pouvoir assigné de coupure en court-circuit.

Un pouvoir assigné de fermeture en court-circuit implique que le disjoncteur est capable d'établir le courant correspondant à ce pouvoir assigné pour une tension appliquée appropriée à la tension assignée d'emploi.

4.3.5.2 Pouvoirs assignés de coupure en court-circuit

Les pouvoirs assignés de coupure en court-circuit d'un disjoncteur sont les valeurs de pouvoir de coupure en court-circuit assignées par le constructeur à ce disjoncteur pour la tension assignée d'emploi, dans des conditions spécifiées.

Un pouvoir assigné de coupure en court-circuit exige que le disjoncteur puisse couper tout courant de court-circuit de valeur inférieure ou égale à ce pouvoir assigné de coupure, à une tension de rétablissement à fréquence industrielle correspondant aux valeurs prescrites pour la tension d'essai et:

- en courant alternatif, à tout facteur de puissance supérieur ou égal à celui du tableau 11 (voir 8.3.2.2.4);
- en courant continu, à toute constante de temps inférieure ou égale à celle du tableau 11 (voir 8.3.2.2.5).

Aucun pouvoir de coupure en court-circuit n'est garanti pour des tensions de rétablissement à fréquence industrielle supérieures aux valeurs prescrites pour la tension d'essai (voir 8.3.2.2.6).

En courant alternatif, le disjoncteur doit être capable de couper un courant présumé correspondant à son pouvoir assigné de coupure en court-circuit et le facteur de puissance correspondant donné au tableau 11, quelle que soit la valeur de la composante continue correspondante, en admettant que la composante périodique est constante.

Les pouvoirs assignés de coupure en court-circuit sont définis comme suit:

- pouvoir assigné de coupure ultime en court-circuit;
- pouvoir assigné de coupure de service en court-circuit.

4.3.5.2.1 Pouvoir assigné de coupure ultime en court-circuit (I_{cu})

Le pouvoir assigné de coupure ultime en court-circuit d'un disjoncteur est la valeur de pouvoir de coupure ultime en court-circuit (voir 2.15.1) fixée par le constructeur pour ce disjoncteur pour la tension assignée d'emploi correspondante, dans les conditions spécifiées en 8.3.5. Il s'exprime, en kA, par la valeur du courant coupé présumé (valeur efficace de la composante périodique dans le cas du courant alternatif).

4.3.5.2.2 Pouvoir assigné de coupure de service en court-circuit (I_{cs})

Le pouvoir assigné de coupure de service en court-circuit d'un disjoncteur est la valeur de pouvoir de coupure de service en court-circuit (voir 2.15.2) fixée par le constructeur pour ce disjoncteur, pour la tension assignée d'emploi correspondante, dans les conditions spécifiées en 8.3.4. Il s'exprime, en kA, par la valeur du courant coupé présumé correspondant à l'un des pourcentages spécifiés du pouvoir assigné de coupure ultime en court-circuit, conformément au tableau 1, et arrondi au chiffre entier le plus proche. Il peut également s'exprimer en % de I_{cu} (exemple $I_{cs} = 25 \% I_{cu}$).

En variante, lorsque le pouvoir assigné de coupure de service en court-circuit est égal au courant assigné de courte durée admissible (voir 4.3.5.4), il peut s'exprimer par cette valeur en kA, à condition que celle-ci ne soit pas inférieure à la valeur minimale correspondante du tableau 1.

For d.c., the rated short-circuit making capacity of a circuit-breaker shall be not less than its rated ultimate short-circuit breaking capacity.

A rated short-circuit making capacity implies that the circuit-breaker shall be able to make the current corresponding to that rated capacity at the appropriate applied voltage related to the rated operational voltage.

4.3.5.2 Rated short-circuit breaking capacities

The rated short-circuit breaking capacities of a circuit-breaker are the values of short-circuit breaking capacity assigned to that circuit-breaker by the manufacturer for the rated operational voltage, under specified conditions.

A rated short-circuit breaking capacity requires that the circuit-breaker shall be able to break any value of short-circuit current up to and including the value corresponding to the rated capacity at a power-frequency recovery voltage corresponding to the prescribed test voltage values and:

- for a.c., at any power factor not less than that of table 11 (see 8.3.2.2.4);
- for d.c., with any time constant not greater than that of table 11 (see 8.3.2.2.5).

For power-frequency recovery voltages in excess of the prescribed test voltage values (see 8.3.2.2.6), no short-circuit breaking capacity is guaranteed.

For a.c., the circuit-breaker shall be capable of breaking a prospective current corresponding to its rated short-circuit breaking capacity and the related power factor given in table 11, irrespective of the value of the inherent d.c. component, on the assumption that the a.c. component is constant.

The rated short-circuit breaking capacities are stated as:

- rated ultimate short-circuit breaking capacity;
- rated service short-circuit breaking capacity.

4.3.5.2.1 Rated ultimate short-circuit breaking capacity (I_{cu})

The rated ultimate short-circuit breaking capacity of a circuit-breaker is the value of ultimate short-circuit breaking capacity (see 2.15.1) assigned to that circuit-breaker by the manufacturer for the corresponding rated operational voltage, under the conditions specified in 8.3.5. It is expressed as the value of the prospective breaking current, in kA (r.m.s. value of the a.c. component in the case of a.c.).

4.3.5.2.2 Rated service short-circuit breaking capacity (I_{cs})

The rated service short-circuit breaking capacity of a circuit-breaker is the value of service short-circuit breaking capacity (see 2.15.2) assigned to that circuit-breaker by the manufacturer for the corresponding rated operational voltage, under the conditions specified in 8.3.4. It is expressed as a value of prospective breaking current, in kA, corresponding to one of the specified percentages of the rated ultimate short-circuit breaking capacity, in accordance with table 1, and rounded up to the nearest whole number. It may be expressed as a % of I_{cu} (for example $I_{cs} = 25 \% I_{cu}$).

Alternatively, when the rated service short-circuit breaking capacity is equal to the rated short-time withstand current (see 4.3.5.4), it may be stated as that value, in kA, provided that it is not less than the relevant minimum value of table 1.

Lorsque I_{cu} dépasse 200 kA pour la catégorie d'emploi A (voir 4.4), ou 1 000 kA pour la catégorie d'emploi B, le constructeur peut déclarer 50 kA comme valeur de los.

Tableau 1 – Rapports normaux entre I_{cs} et I_{cu}

Catégorie d'emploi A	
% de l _{cu}	
25	
50	
75	
100	

Catégorie d'emploi B % de l _{cu}		
50		
75		
100		

4.3.5.3 Relation normale entre les pouvoirs de fermeture et de coupure en court-circuit des disjoncteurs à courant alternatif et les facteurs de puissance correspondants

La relation normale entre le pouvoir de coupure en court-circuit et le pouvoir de fermeture en court-circuit est donnée par le tableau 2.

Tableau 2 – Rapport *n* entre le pouvoir de fermeture en court-circuit et le pouvoir de coupure en court-circuit et le facteur de puissance correspondant (pour les disjoncteurs à courant alternatif)

Pouvoir de coupure en court-circuit ! kA (valeur efficace)	Facteur de puissance	Valeur minimale exigée de n $n = \frac{\text{pouvoir de fermeture en court-circuit}}{\text{pouvoir de coupure en court-circuit}}$
4,5 ≤ <i>l</i> ≤ 6	0,7	1,5
6 < <i>l</i> ≤ 10	0,5	1,7
10 < <i>l</i> ≤ 20	0,3	2,0
20 < 1 ≤ 50	0,25	2,1
50 < 1	0,2	2,2

NOTE Pour des valeurs du pouvoir de coupure plus faibles que 4,5 kA, pour certaines applications, voir le tableau 11 pour le facteur de puissance.

Les pouvoirs assignés de fermeture et de coupure en court-circuit ne sont valables que si le disjoncteur est manoeuvré dans les conditions prescrites en 7.2.1.1 et 7.2.1.2.

Pour des prescriptions spéciales, le constructeur peut fixer une valeur de pouvoir assigné de fermeture en court-circuit supérieure à celle exigée dans le tableau 2. Les essais de vérification de ces valeurs assignées doivent faire l'objet d'un accord entre le constructeur et l'utilisateur.

4.3.5.4 Courant assigné de courte durée admissible (Icw)

Le courant assigné de courte durée admissible d'un disjoncteur est la valeur de courant de courte durée admissible fixée pour ce disjoncteur par le constructeur dans les conditions d'essai spécifiées en 8.3.6.2.

En courant alternatif, la valeur de ce courant est la valeur efficace de la composante périodique du courant présumé de court-circuit, supposée constante pendant le retard de courte durée.

Where $I_{\rm cu}$ exceeds 200 kA for utilization category A (see 4.4), or 1 000 kA for utilization category B, the manufacturer may declare a value $I_{\rm cs}$ of 50 kA.

Table 1 – Standard ratios between I_{cs} and I_{cu}

Utilization category A	
% of I _{cu}	
25	
50	
75	
100	

Utilization category B % of I _{cu}		
50		
75		
100		

4.3.5.3 Standard relationship between short-circuit making and breaking capacities and related power factor, for a.c. circuit-breakers

The standard relationship between short-circuit breaking capacity and short-circuit making capacity is given in table 2.

Table 2 – Ratio *n* between short-circuit making capacity and short-circuit breaking capacity and related power factor (for a.c. circuit-breakers)

Power factor	Minimum value required for n n = short-circuit making capacity short-circuit breaking capacity
0,7	1,5
0,5	1,7
0,3	2,0
0,25	2,1
0,2	2,2
	0,7 0,5 0,3 0,25

NOTE For values of breaking capacity lower than 4,5 kA, for certain applications, see table 11 for the power factor.

The rated short-circuit making and breaking capacities are only valid when the circuit-breaker is operated in accordance with the requirements of 7.2.1.1 and 7.2.1.2.

For special requirements, the manufacturer may assign a value of rated short-circuit making capacity higher than that required by table 2. Tests to verify these rated values shall be the subject of agreement between manufacturer and user.

4.3.5.4 Rated short-time withstand current (I_{cw})

The rated short-time withstand current of a circuit-breaker is the value of short-time withstand current assigned to that circuit-breaker by the manufacturer under the test conditions specified in 8.3.6.2.

For a.c., the value of this current is the r.m.s. value of the a.c. component of the prospective short-circuit current, assumed constant during the short-time delay.

+A2:2001

– 34 **–**

Le retard de courte durée associé au courant assigné de courte durée admissible doit être d'au moins 0,05 s, les valeurs préférentielles étant les suivantes:

$$0.05 - 0.1 - 0.25 - 0.5 - 1 s$$

Le courant assigné de courte durée admissible ne doit pas avoir une valeur moindre que les valeurs figurant au tableau 3.

Tableau 3 - Valeurs minimales du courant assigné de courte durée admissible

Courant assig	né I _n Courant assigné de courte durée admissible I _{cw} – Valeur minimales kA
$I_{\rm n} \le 2500$ $I_{\rm n} > 2500$	La plus grande des deux valeurs: 12 I _n ou 5 kA 30 kA

4.4 Catégories d'emploi

La catégorie d'emploi d'un disjoncteur doit être fixée en fonction du fait qu'il est ou non spécifiquement prévu pour la sélectivité par rapport aux autres disjoncteurs montés en série côté aval, dans des conditions de court-circuit, par une temporisation intentionnelle (voir figure A.3).

L'attention est attirée sur les différences entre les essais s'appliquant aux deux catégories d'emploi (voir tableau 9 et 8.3.4, 8.3.5, 8.3.6 et 8.3.8).

Les catégories d'emploi sont définies au tableau 4.

Tableau 4 – Catégories d'emploi

Catégorie d'emploi	Application quant à la sélectivité
A	Disjoncteurs non spécifiquement prévus pour la sélectivité en conditions de court-circuit, par rapport à d'autres dispositifs de protection contre les courts-circuits montés en série côté aval, c'est-à-dire sans retard intentionnel de courte durée prévu pour la sélectivité en condition de court-circuit, et par conséquent, sans courant assigné de courte durée admissible, selon 4.3.5.4.
В	Disjoncteurs spécifiquement prévus pour la sélectivité en condition de court-circuit, par rapport à d'autres dispositifs de protection contre les courts-circuits montés en série côté aval, c'est-à-dire avec un retard intentionnel de courte durée (qui peut être réglable), et destinés à la sélectivité en condition de court-circuit. Ces disjoncteurs ont un courant assigné de courte durée admissible conforme au 4.3.5.4.
	NOTE La sélectivité n'est pas nécessairement assurée jusqu'au pouvoir de coupure ultime en court-circuit du disjoncteur (par exemple, en cas de manoeuvre d'un déclencheur instantané), mais elle l'est au moins jusqu'à la valeur spécifiée au tableau 3.

NOTE 1 Le facteur de puissance ou la constante de temps correspondant à chaque valeur du courant assigné de court-circuit est indiqué au tableau 11 (voir 8.3.2.2.4 et 8.3.2.2.5).

NOTE 2 L'attention est attirée sur les prescriptions de valeur minimale du pourcentage de I_{cs} qui sont différentes pour les catégories d'emploi A et B, conformément au tableau 1.

NOTE 3 Un disjoncteur de catégorie d'emploi A peut avoir un retard intentionnel de courte durée prévu pour la sélectivité dans des conditions autres que celles de court-circuit et un courant assigné de courte durée admissible de valeur inférieure à celle du tableau 3. Dans ce cas, les essais comprennent la séquence d'essais IV (voir 8.3.6), au courant assigné de courte durée admissible.

The short-time delay associated with the rated short-time withstand current shall be at least 0,05 s, preferred values being as follows:

$$0.05 - 0.1 - 0.25 - 0.5 - 1 s$$

The rated short-time withstand current shall be not less than the appropriate values shown in table 3.

Table 3 – Minimum values of rated short-time withstand current

Rated current I _n	Rated short-time withstand current I _{cw} – Minimum values kA
I _n ≤ 2 500 I _n > 2 500	12 I _n or 5 kA, whichever is the greater 30 kA

4.4 Utilization categories

The utilization category of a circuit-breaker shall be stated with reference to whether or not it is specifically intended for selectivity by means of an intentional time delay with respect to other circuit-breakers in series on the load side, under short-circuit conditions (see figure A.3).

Attention is drawn to the differences of the tests applying to the two utilization categories (see table 9 and 8.3.4, 8.3.5, 8.3.6 and 8.3.8).

Utilization categories are defined in table 4.

Table 4 - Utilization categories

Utilization category	Application with respect to selectivity	
A	Circuit-breakers not specifically intended for selectivity under short-circuit conditions with respect to other short-circuit protective devices in series on the load side, i.e. without an intentional short-time delay provided for selectivity under short-circuit conditions, and therefore without a short-time withstand current rating according to 4.3.5.4.	
В	Circuit-breakers specifically intended for selectivity under short-circuit conditions with respect to other short-circuit protective devices in series on the load side, i.e. with an intentional short-time delay (which may be adjustable), provided for selectivity under short-circuit conditions. Such circuit-breakers have a short-time withstand current rating according to 4.3.5.4.	
	NOTE Selectivity is not necessarily ensured up to the ultimate short-circuit breaking capacity of the circuit-breakers (for example in the case of operation of an instantaneous release) but at least up to the value specified in table 3.	

NOTE 1 The power factor or time constant associated with each value of rated short-circuit current is given in table 11 (see 8.3.2.2.4 and 8.3.2.2.5).

NOTE 2 Attention is drawn to the different requirements for the minimum required percentage of l_{cs} for utilization categories A and B, in accordance with table 1.

NOTE 3 A circuit-breaker of utilization category A may have an intentional short-time delay provided for selectivity under conditions other than those of short circuit, with a short-time withstand current less than that according to table 3. In that case, the tests include test sequence IV (see 8.3.6) at the assigned short-time withstand current.

4.5 Circuits de commande

4.5.1 Circuits de commande électriques

Le 4.5.1 de la première partie est applicable, avec le complément suivant:

Si la tension assignée d'alimentation de commande est différente de celle du circuit principal, il est recommandé de choisir sa valeur parmi celles du tableau 5.

Tableau 5 – Valeurs préférentielles de la tension assignée d'alimentation de commande, si elle est différente de celle du circuit principal

Courant continu	Courant alternatif monophasé
V	V
24 - 48 - 110 - 125 - 220 - 250	24 - 48 - 110 - 127 - 220 - 230

NOTE Le constructeur doit normalement être en mesure d'indiquer la valeur ou les valeurs du courant absorbé par les circuits de commande sous la tension assignée d'alimentation de commande.

4.5.2 Circuits de commande alimentés en air comprimé (pneumatiques ou électro-pneumatiques)

Le 4.5.2 de la première partie est applicable.

4.6 Circuits auxiliaires

Le 4.6 de la première partie est applicable.

4.7 Déclencheurs

4.7.1 Types

- 1) Déclencheur shunt.
- 2) Déclencheur à maximum de courant:
 - a) instantané;
 - b) à retard indépendant;
 - c) à temps inverse:
 - indépendant de la charge préalable;
 - dépendant de la charge préalable (par exemple: déclencheur du type thermique).

NOTE 1 Le terme «déclencheur de surcharge» est employé pour désigner des déclencheurs à maximum de courant destinés à la protection contre les surcharges (voir 2.4.30 de la première partie). Le terme «déclencheur de court-circuit» est employé pour désigner des déclencheurs à maximum de courant destinés à la protection contre les courts-circuits (voir 2.11).

NOTE 2 Le terme «déclencheur réglable», utilisé dans la présente norme, comprend aussi les déclencheurs interchangeables.

- 3) Déclencheur à minimum de tension (déclencheur d'ouverture).
- 4) Autres déclencheurs.

4.7.2 Caractéristiques

- 1) Déclencheur shunt et déclencheur à minimum de tension (déclencheurs d'ouverture):
 - tension assignée du circuit de commande (U_c) ;
 - nature du courant;
 - fréquence assignée, dans le cas du courant alternatif.

4.5 Control circuits

4.5.1 Electrical control circuits

Subclause 4.5.1 of Part 1 applies, with the following addition:

If the rated control supply voltage is different from that of the main circuit, it is recommended that its value be chosen from table 5.

Table 5 – Preferred values of the rated control supply voltage, if different from that of the main circuit

d.c.	Single-phase a.c.
V	V
24 - 48 - 110 - 125 - 220 - 250	24 - 48 - 110 - 127 - 220 - 230

NOTE The manufacturer should be prepared to state the value or values of the current taken by the control circuits at the rated control supply voltage.

4.5.2 Air-supply control circuits (pneumatic or electro-pneumatic)

Subclause 4.5.2 of Part 1 applies.

4.6 Auxiliary circuits

Subclause 4.6 of Part 1 applies.

4.7 Releases

4.7.1 Types

- 1) Shunt release;
- 2) Over-current release:
 - a) instantaneous;
 - b) definite time delay;
 - c) inverse time delay:
 - independent of previous load;
 - dependent on previous load (for example thermal type release).

NOTE 1 The term "overload release" is used to identify over-current releases intended for protection against overloads (see 2.4.30 of Part 1). The term "short-circuit release" is used to identify over-current releases intended for protection against short circuits (see 2.11).

NOTE 2 The term "adjustable release" used in this standard also includes interchangeable releases.

- Undervoltage release (for opening).
- 4) Other releases.

4.7.2 Characteristics

- 1) Shunt release and undervoltage release (for opening):
 - rated control circuit voltage (U_c) ;
 - kind of current;
 - rated frequency, if a.c.

2) Déclencheur à maximum de courant:

- courant assigné (In);
- nature du courant;
- fréquence assignée, dans le cas du courant alternatif;
- courant de réglage (ou domaine de réglage);
- temps de réglage (ou domaine de réglage).

Le courant assigné d'un déclencheur à maximum de courant est la valeur du courant (valeur efficace dans le cas du courant alternatif) correspondant au courant de réglage maximal qu'il doit être capable de supporter dans les conditions d'essai spécifiées au 8.3.2.5 sans que l'échauffement dépasse les valeurs spécifiées au tableau 7.

4.7.3 Courant de réglage des déclencheurs à maximum de courant

Pour les disjoncteurs équipés de déclencheurs réglables (voir note 2 de 4.7.1, point 2)), le courant de réglage (ou le domaine des courants de réglage, le cas échéant) doit être marqué sur le déclencheur ou sur son échelle de réglage. L'indication peut être donnée soit directement en ampères, soit en multiples de la valeur du courant marquée sur le déclencheur.

Pour les disjoncteurs équipés de déclencheurs non réglables, l'indication peut figurer sur le disjoncteur. Si les caractéristiques de fonctionnement du déclencheur de surcharge satisfont aux prescriptions du tableau 6, il suffit d'indiquer sur le disjoncteur son courant assigné (I_n) .

Pour les déclencheurs indirects fonctionnant à l'aide d'un transformateur de courant, les indications peuvent se rapporter soit au courant dans le primaire du transformateur de courant qui les alimente, soit au courant de réglage du déclencheur de surcharge. Dans l'un et l'autre cas, le rapport de transformation du transformateur de courant doit être indiqué.

Sauf spécification contraire:

- la valeur de fonctionnement des déclencheurs de surcharge autres que ceux du type thermique est indépendante de la température de l'air ambiant dans les limites de –5 °C à +40 °C,
- pour les déclencheurs du type thermique, les valeurs indiquées correspondent à une température de référence de +30 °C ± 2 °C. Le constructeur doit être en mesure de préciser l'influence des variations de la température de l'air ambiant (voir 7.2.1.2.4, point b)).

4.7.4 Réglage du temps de déclenchement des déclencheurs à maximum de courant

1) Déclencheurs à maximum de courant à retard indépendant

Le retard de ces déclencheurs est indépendant de la surintensité. Le réglage du temps de déclenchement doit être défini comme égal à la valeur en secondes de la durée d'ouverture du disjoncteur si le retard n'est pas réglable, ou aux valeurs extrêmes de la durée d'ouverture si le retard est réglable.

Déclencheurs à maximum de courant à temps inverse

Le retard de ces déclencheurs dépend de la surintensité.

Les caractéristiques temps/courant doivent être données sous forme de courbes fournies par le constructeur. Celles-ci doivent indiquer comment la durée d'ouverture, à partir de l'état froid, varie en fonction du courant dans le domaine de fonctionnement du déclencheur. Le constructeur doit indiquer, par des moyens convenables, les tolérances applicables à ces courbes.

Ces courbes doivent être données pour chacune des valeurs extrêmes du courant de réglage et, si le temps de réglage donné est réglable, il est recommandé qu'elles soient également données pour chacune des valeurs extrêmes du temps de réglage.

NOTE II est recommandé de porter le courant en abscisses et le temps en ordonnées, en utilisant des échelles logarithmiques. De plus, en vue de faciliter l'étude de la coordination des divers types de projection contre les surintensités, il est recommandé de porter le courant en multiples du courant de réglage et le temps en secondes en utilisant les échelles normalisées données dans les feuilles de courbe normale décrites en 5.6.1 de la CEI 60269-1 et dans les figures 4(I), 3(II) et 4(II) de la CEI 60269-2-1.

- 2) Over-current release:
 - rated current (I_0) ;
 - kind of current;
 - rated frequency, if a.c.;
 - current setting (or range of settings);
 - time setting (or range of settings).

The rated current of an over-current release is the value of current (r.m.s. if a.c.) corresponding to the maximum current setting which it shall be capable of carrying under the test conditions specified in 8.3.2.5, without the temperature-rise exceeding the values specified in table 7.

4.7.3 Current setting of over-current releases

For circuit-breakers fitted with adjustable releases (see note 2 to 4.7.1, item 2)), the current setting (or range of current-settings, as applicable) shall be marked on the release or on its scale. The marking may be either directly in amperes, or as a multiple of the current value marked on the release.

For circuit-breakers fitted with non-adjustable releases, the marking may be on the circuit-breaker. If the operating characteristics of the overload release comply with the requirements of table 6, it will be sufficient to mark the circuit-breaker with its rated current (I_n) .

In the case of indirect releases operated by current transformers, the marking may refer either to the primary current of the current transformer through which they are supplied, or to the current setting of the overload release. In either case, the ratio of the current transformer shall be stated.

Unless otherwise specified

- the operating value of overload releases other than those of the thermal type is independent of the ambient air temperature within the limits of -5 °C to +40 °C;
- for releases of the thermal type, the values stated are for a reference temperature of +30 °C ± 2 °C. The manufacturer shall be prepared to state the influence of variations in the ambient air temperature (see 7.2.1.2.4, item b)).

4.7.4 Tripping time setting of over-current releases

1) Definite time-delay over-current releases

The time-delay of such releases is independent of the over-current. The tripping time setting shall be stated as the duration in seconds of the opening time of the circuit-breaker, if the time-delay is not adjustable, or the extreme values of the opening time, if the time-delay is adjustable.

Inverse time-delay over-current releases

The time-delay of such releases is dependent on the over-current.

The time/current characteristics shall be given in the form of curves supplied by the manufacturer. These shall indicate how the opening time, starting from the cold state, varies with current within the range of operation of the release. The manufacturer shall indicate, by suitable means, the tolerances applicable to these curves.

These curves shall be given for each extreme value of the current setting and, if the time setting for a given current setting is adjustable, it is recommended that they be given in addition for each extreme value of the time setting.

NOTE It is recommended that the current be plotted as abscissa and the time as ordinate, using logarithmic scales. Furthermore, in order to facilitate the study of co-ordination of different types of over-current protection, it is recommended that the current be plotted as multiples of the setting current and the time in seconds on the standard graph sheets detailed in 5.6.1 of IEC 60269-1 and in figures 4(I), 3(II) and 4(II) of IEC 60269-2-1.

4.8 Fusibles incorporés (disjoncteurs à fusibles incorporés)

Le 4.8 de la première partie est applicable.

Le constructeur doit fournir les informations nécessaires.

4.9 Surtensions de manoeuvre

Le 4.9 de la première partie est applicable lorsqu'une valeur de tension assignée de tenue aux chocs $U_{\rm imp}$ est déclarée.

5 Informations sur le matériel

5.1 Nature des informations

Le 5.1 de la première partie est applicable de façon appropriée pour un modèle particulier.

En supplément le constructeur doit, sur demande, fournir les informations concernant la puissance dissipée pour les différentes tailles (voir 2.1.1). Voir annexe G.

5.2 Marquage

Chaque disjoncteur doit être marqué de façon indélébile.

- a) Les indications suivantes doivent se trouver sur le disjoncteur lui-même ou sur une ou plusieurs plaques signalétiques fixées au disjoncteur, et ces marques doivent être à un endroit tel qu'elles soient visibles et lisibles lorsque le disjoncteur est en place;
 - courant assigné (In);

 - indications des positions d'ouverture et de fermeture, respectivement par et | si l'on utilise des symboles (voir 7.1.5.1 de la première partie).
- b) Les indications suivantes doivent également être marquées sur le disjoncteur, comme spécifié au point a), sauf qu'il n'est pas nécessaire qu'elles soient visibles lorsque le disjoncteur est en place;
 - · nom du constructeur ou marque de fabrique;
 - désignation du type ou numéro de série;
 - IEC 60947-2 si le constructeur déclare la conformité à la présente norme;
 - · catégorie d'emploi;
 - tension(s) assignée(s) d'emploi (U_e) (voir 4.3.1.1 et le cas échéant, annexe H);

 - pouvoir assigné de coupure de service en court-circuit (I_{cs}) à la tension assignée correspondante (U_{e}) ;
 - pouvoir assigné de coupure ultime en court-circuit (I_{cu}) à la tension assignée correspondante (U_e) ;
 - courant assigné de courte durée admissible (I_{cw}) et courte durée correspondante pour la catégorie d'emploi B;
 - bornes d'entrée et de sortie, à moins que leur raccordement soit indifférent;
 - bornes du pôle neutre, s'il y a lieu, par la lettre N;
 - borne de terre de protection, le cas échéant, par le symbole (voir 7.1.9.3 de la première partie);
 - température de référence pour les déclencheurs thermiques non compensés, si elle est différente de 30 °C.

4.8 Integral fuses (integrally fused circuit-breakers)

Subclause 4.8 of Part 1 applies.

The manufacturer shall provide the necessary information.

4.9 Switching overvoltages

Subclause 4.9 of Part 1 applies, when a rated impulse withstand voltage $U_{\rm imp}$ is declared.

5 Product information

5.1 Nature of the information

Subclause 5.1 of Part 1 applies, as far as appropriate for a particular design.

In addition the manufacturer shall make available, upon request, information concerning typical power losses for the various frame sizes (see 2.1.1). See annex G.

5.2 Marking

Each circuit-breaker shall be marked in a durable manner.

- a) The following data shall be marked on the circuit-breaker itself or on a nameplate or nameplates attached to the circuit-breaker, and located in a place such that they are visible and legible when the circuit-breaker is installed;
 - rated current (I_n);
 - suitability for isolation, if applicable, with the symbol
 - indication of the open and closed positions, with and respectively, if symbols are used (see 7.1.5.1 of Part 1).
- b) The following data shall also be marked externally on the circuit-breaker, as specified in item a), except that they need not be visible when the circuit-breaker is installed;
 - · manufacturer's name or trade mark;
 - type designation or serial number;
 - IEC 60947-2 if the manufacturer claims compliance with this standard;
 - · utilization category;
 - rated operational voltage(s) U_e (see 4.3.1.1 and, where applicable, annex H);
 - value (or range) of the rated frequency (for example 50 Hz), and/or the indication "d.c." (or the symbol ======);
 - rated service short-circuit breaking capacity (I_{cs}) at the corresponding rated voltage (U_{e});
 - rated ultimate short-circuit breaking capacity (I_{cu}) at the corresponding rated voltage (U_e);
 - rated short-time withstand current (I_{cw}), and associated short-time delay, for utilization category B;
 - line and load terminals, unless their connection is immaterial;
 - neutral pole terminals, if applicable, by the letter N;
 - protective earth terminal, where applicable, by the symbol (<u>\(\price \)</u>) (see 7.1.9.3 of Part 1)
 - reference temperature for non-compensated thermal releases, if different from 30 °C.

- c) Les indications suivantes doivent soit être marquées sur le disjoncteur comme spécifié au point b), soit figurer dans les catalogues ou notices du constructeur;
 - pouvoir assigné de fermeture en court-circuit (I_{cm}) (s'il est supérieur à celui spécifié au 4.3.5.1);
 - tension assignée d'isolement (U_i) , si elle est supérieure à la tension assignée d'emploi maximale;
 - tension assignée de tenue aux chocs (U_{imp}), lorsqu'elle est déclarée;
 - degré de pollution s'il est autre que 3;
 - courant thermique conventionnel sous enveloppe (Ithe), s'il est différent du courant assigné;
 - code IP, le cas échéant (voir annexe C de la première partie);
 - taille minimale de l'enveloppe et, s'il y a lieu, données concernant la ventilation, auxquelles s'appliquent les caractéristiques assignées marquées;
 - distance minimale entre les disjoncteurs et les parties métalliques reliées à la terre pour les disjoncteurs destinés à être utilisés sans enveloppe;
 - aptitude à l'environnement A ou l'environnement B, selon le cas;
 - détection sensible à la valeur efficace, si applicable, conformément à F.4.1.1.
- d) Les indications suivantes concernant les dispositifs d'ouverture et de fermeture du disjoncteur doivent figurer, soit sur leurs propres plaques signalétiques, soit sur la plaque signalétique du disjoncteur; si l'espace disponible est insuffisant, elles doivent figurer dans les catalogues ou notices du constructeur:
 - tension assignée du circuit de commande du dispositif de fermeture (voir 7.2.1.2 de la première partie) et fréquence assignée dans le cas du courant alternatif;
 - tension assignée du circuit de commande du déclencheur shunt (voir 7.2.1.4 de la première partie) et/ou du déclencheur à minimum de tension (ou du déclencheur à manque de tension) (voir 7.2.1.3 de la première partie), et fréquence assignée dans le cas du courant alternatif;
 - courant assigné des déclencheurs indirects à maximum de courant;
 - nombre et type des contacts auxiliaires ainsi que nature du courant, fréquence assignée (s'il y a lieu) et tensions assignées des interrupteurs auxiliaires, si elles différent de celles du circuit principal.
- e) Marquage des bornes

Le 7.1.7.4 de la première partie est applicable (voir aussi le point b) ci-dessus).

5.3 Instructions d'installation, de fonctionnement et d'entretien

Le 5.3 de la première partie est applicable.

6 Conditions normales de service, de montage et de transport

L'article 6 de la première partie est applicable, avec le complément suivant:

Degré de pollution (voir 6.1.3.2 de la première partie)

Sauf spécification contraire du constructeur, un disjoncteur est prévu pour être installé dans les conditions d'environnement du degré de pollution 3.

- c) The following data shall either be marked on the circuit-breaker as specified in item b), or shall be made available in the manufacturer's published information:
 - rated short-circuit making capacity (I_{cm}), if higher than that specified in 4.3.5.1;
 - rated insulation voltage (U_i) , if higher than the maximum rated operational voltage;
 - rated impulse withstand voltage (U_{imp}), when declared;
 - · pollution degree if other than 3;
 - conventional enclosed thermal current (Ithe) if different from the rated current;
 - IP Code, where applicable (see Appendix C of Part 1);
 - · minimum enclosure size and ventilation data (if any) to which marked ratings apply;
 - details of minimum distance between circuit-breaker and earthed metal parts for circuitbreakers intended for use without enclosures;
 - · suitability for environment A or environment B, as applicable;
 - r.m.s. sensing, if applicable, according to F.4.1.1.
- d) The following data concerning the opening and closing devices of the circuit-breaker shall be placed either on their own nameplates or on the nameplate of the circuit-breaker; alternatively, if space available is insufficient, they shall be made available in the manufacturer's published information:
 - rated control circuit voltage of the closing device (see 7.2.1.2 of Part 1) and rated frequency for a.c.;
 - rated control circuit voltage of the shunt release (see 7.2.1.4 of Part 1) and/or of the under-voltage release (or of the no-voltage release) (see 7.2.1.3 of Part 1), and rated frequency for a.c.;
 - rated current of indirect over-current releases;
 - number and type of auxiliary contacts and kind of current, rated frequency (if a.c.) and rated voltages of the auxiliary switches, if different from those of the main circuit.
- e) Terminal marking

Subclause 7.1.7.4 of Part 1 applies (see also item b) above).

5.3 Instructions for installation, operation and maintenance

Subclause 5.3 of Part 1 applies.

6 Normal service, mounting and transport conditions

Clause 6 of Part 1 applies with the following addition:

Pollution degree (see 6.1.3.2 of Part 1)

Unless otherwise stated by the manufacturer, a circuit-breaker is intended for installation under environmental conditions of pollution degree 3.

7 Dispositions relatives à la construction et au fonctionnement

7.1 Dispositions constructives

Le paragraphe 7.1 de la CEI 60947-1 s'applique à l'exception du texte de 7.1.1.1, qui est remplacé par ce qui suit:

Les pièces en matériau isolant qui pourraient être exposées aux contraintes thermiques dues aux effets de l'électricité et dont la détérioration pourrait mettre en cause la sécurité du matériel ne doivent pas être affectées par une chaleur anormale et par le feu.

Les essais sur le matériel doivent être ceux de l'essai au fil incandescent de la CEI 60695-2-1/0, de la CEI 60695-2-1/1, de la CEI 60695-2-1/2 et de la CEI 60695-2-1/3.

Les pièces en matériau isolant nécessaires pour maintenir en position les parties conductrices du circuit principal en service doivent satisfaire à l'essai au fil incandescent de 8.2.1.1.1 de la CEI 60947-1 à une température de 960 °C.

Les pièces en matériau isolant autres que celles spécifiées à l'alinéa précédent doivent satisfaire aux prescriptions de l'essai au fil incandescent de 8.2.1.1.1 de la CEI 60947-1 à une température de 650 °C.

7.1.1 Disjoncteurs débrochables

En position débrochée, les contacts d'isolement du circuit principal et, s'il y a lieu, des circuits auxiliaires des disjoncteurs débrochables, doivent avoir des distances de sectionnement répondant aux prescriptions spécifiées pour la fonction de sectionnement, en tenant compte des tolérances de fabrication et des modifications dimensionnelles causées par l'usure.

Le mécanisme de débrochage doit être équipé d'un dispositif d'indication sûr et robuste indiquant sans équivoque les positions des contacts de sectionnement.

Le mécanisme de débrochage doit être équipé de dispositifs de verrouillage ne permettant au disjoncteur d'être débroché (ou embroché) qu'après l'ouverture des contacts principaux.

En outre, le mécanisme de débrochage doit être équipé de dispositifs de verrouillage ne permettant la fermeture des contacts principaux que:

- lorsque les contacts de sectionnement sont complètement fermés, ou
- lorsque la distance de sectionnement spécifiée est obtenue entre les parties fixes et mobiles des contacts de sectionnement (position débrochée).

Lorsque le disjoncteur est en position débrochée, il doit comporter des dispositifs permettant de s'assurer que les distances spécifiées de sectionnement entre les contacts de sectionnement ne puissent être réduites par inadvertance.

7.1.2 Prescriptions supplémentaires pour les disjoncteurs aptes au sectionnement

Pour des prescriptions supplémentaires concernant le fonctionnement, voir 7.2.7.

Le 7.1.6 de la première partie est applicable avec le complément suivant:

NOTE Si la position de déclenchement n'est pas la position d'ouverture indiquée, il convient qu'elle soit identifiée sans ambiguïté.

La position d'ouverture indiquée est la seule position dans laquelle est assurée la distance de sectionnement spécifiée entre les contacts.

+A2:2001

7 Constructional and performance requirements

7.1 Constructional requirements

Subclause 7.1 of IEC 60947-1 applies except that the text of 7.1.1.1 is replaced by the following:

Parts of insulating materials which might be exposed to thermal stresses due to electrical effects and the deterioration of which might impair the safety of the equipment shall not be adversely affected by abnormal heat and fire.

Tests on equipment shall be made by the glow-wire tests of IEC 60695-2-1/0, IEC 60695-2-1/1, IEC 60695-2-1/2 and IEC 60695-2-1/3.

Parts of insulating materials necessary to retain in position current-carrying parts of the main circuit in service shall conform to the glow-wire test of 8.2.1.1.1 of IEC 60947-1, at a temperature of 960 °C.

Parts of insulating materials other than those specified in the previous paragraph shall conform to the requirements of the glow-wire tests of 8.2.1.1.1 of IEC 60947-1 at a temperature of 650 °C.

7.1.1 Withdrawable circuit-breakers

In the disconnected position, the isolating contacts of the main circuit and, where applicable, auxiliary circuits of withdrawable circuit-breakers shall have isolating distances which comply with the requirements specified for the isolating function, taking account of manufacturing tolerances and changes in dimensions due to wear.

The withdrawable mechanism shall be fitted with a reliable indicating device which indicates unambiguously the positions of the isolating contacts.

The withdrawable mechanism shall be fitted with interlocks which only permit the isolating contacts to be separated or re-closed when the main contacts of the circuit-breaker are open.

In addition, the withdrawable mechanism shall be fitted with interlocks which only permit the main contacts to be closed

- when the isolating contacts are fully closed, or
- when the specified isolating distance is achieved between the fixed and moving parts of the isolating contacts (disconnected position).

When the circuit-breaker is in the disconnected position, means shall be provided to ensure that the specified isolating distances between the isolating contacts cannot be inadvertently reduced.

7.1.2 Additional requirements for circuit-breakers suitable for isolation

For additional requirements concerning performance, see 7.2.7.

Subclause 7.1.6 of Part 1 applies with the following addition:

NOTE If the tripped position is not the indicated open position, it should be clearly identified.

The indicated open position is the only position in which the specified isolating distance between the contacts is ensured.

7.1.3 Distances d'isolement et lignes de fuite

Dans le cas des disjoncteurs pour lesquels le constructeur a déclaré une valeur de tension assignée de tenue aux chocs (U_{imp}), les valeurs minimales sont données dans les tableaux 13 et 15 de la première partie.

Dans le cas des disjoncteurs pour lesquels le constructeur n'a pas déclaré de valeur de U_{imp} , l'annexe D donne des conseils pour évaluer les valeurs minimales.

7.1.4 Prescriptions pour la sécurité de l'opérateur

Il ne doit pas y avoir de passage ou d'ouverture permettant aux particules incandescentes de s'échapper de la zone où se trouvent les organes de commande.

La conformité est vérifiée selon les indications données en 8.3.2.6.1, point b).

7.1.5 Liste des différences constructives

Des disjoncteurs pour une taille donnée sont considérés comme ayant une différence constructive si l'une des caractéristiques suivantes n'est pas la même:

- matériau, revêtement et dimensions des parties internes transmettant le courant, en admettant cependant les différences citées en a), b) et c) ci-après;
- dimensions, matériau, configuration et mode de fixation des contacts principaux;
- tout mécanisme de manoeuvre manuelle intégré, ses matériaux et caractéristiques physiques;
- matériaux moulés et isolants:
- principe de fonctionnement, matériaux et construction du système d'extinction de l'arc;
- conception de base des dispositifs de déclenchement aux surintensités en admettant, cependant, les différences détaillées en a), b) et c) ci-après.

Les différences suivantes ne constituent pas une différence constructive:

- a) les dimensions des bornes, si les distances d'isolement et les lignes de fuites ne sont pas réduites;
- b) dans le cas de déclencheurs thermiques et magnétiques, les dimensions et matériaux des composants du déclencheur qui fixent le courant assigné;
- c) les enroulements du secondaire des déclencheurs avec transformateurs de courant;
- d) les moyens de manoeuvre externes supplémentaires aux moyens intégrés de manœuvre.

7.1.6 Exigences supplémentaires pour les disjoncteurs munis d'un pôle de neutre

Le paragraphe 7.1.8 de la CEI 60947-1 s'applique avec le complément suivant:

Si un pôle ayant un pouvoir de fermeture et de coupure approprié est utilisé comme un pôle de neutre, alors tous les pôles, y compris le pôle de neutre, peuvent substantiellement fonctionner ensemble.

7.2 Dispositions relatives au fonctionnement

7.2.1 Conditions de fonctionnement

7.2.1.1 Fermeture

Pour qu'un disjoncteur soit fermé avec sécurité lorsqu'il doit établir un courant correspondant à son pouvoir assigné de fermeture en court-circuit, il est essentiel qu'il soit manoeuvré avec la même vitesse et la même force qu'au cours des essais de type de vérification du pouvoir de fermeture en court-circuit.

7.1.3 Clearances and creepage distances

For circuit-breakers for which the manufacturer has declared a value of rated impulse withstand voltage (U_{imp}), minimum values are given in tables 13 and 15 of Part 1.

For circuit-breakers for which the manufacturer has not declared a value of U_{imp} , guidance for minimum values is given in annex D.

7.1.4 Requirements for the safety of the operator

There shall be no path or opening which allows incandescent particles to be discharged from the area of the manual operating means.

Compliance is checked by the provisions of 8.3.2.6.1, item b).

7.1.5 List of construction breaks

Circuit-breakers of a given frame size are considered to have a construction break (see 2.1.2) if any one of the following features are not the same:

- material, finish and dimensions of internal current-carrying parts, admitting, however, the variations listed in a), b) and c) below;
- size, material, configuration and method of attachment of the main contacts;
- any integral manual operating mechanism, its materials and physical characteristics;
- moulding and insulating materials;
- the principle of operation, materials and construction of the arc extinction device;
- the basic design of the over-current tripping devices, admitting, however, the variations detailed in a), b) and c) below.

Variations in the following do not constitute a construction break:

- a) dimensions of terminals, provided that creepage and clearance distances are not reduced;
- b) in the case of thermal and magnetic releases those dimensions and materials of the release components which determine the current rating;
- c) secondary windings of current transformer operated releases;
- d) external operating means, additional to the integral operating means.

7.1.6 Additional requirements for circuit-breakers provided with a neutral pole

Subclause 7.1.8 of IEC 60947-1 applies with the following addition:

If a pole with an appropriate making and breaking capacity is used as a neutral pole, then all poles, including the neutral pole, may operate substantially together.

7.2 Performance requirements

7.2.1 Operating conditions

7.2.1.1 Closing

For a circuit-breaker to be closed safely on to the making current corresponding to its rated short-circuit making capacity, it is essential that it should be operated with the same speed and the same firmness as during the type test for proving the short-circuit making capacity.

7.2.1.1.1 Fermeture dépendante manuelle

Pour un disjoncteur muni d'un mécanisme de fermeture dépendante manuelle, il n'est pas possible de fixer une valeur de pouvoir assigné de fermeture en court-circuit sans tenir compte des conditions de manoeuvre mécanique.

Un tel disjoncteur ne doit normalement pas être utilisé dans des circuits pour lesquels la valeur de crête du courant établi présumé dépasse 10 kA.

Cependant, ceci ne s'applique pas dans le cas d'un disjoncteur muni d'un mécanisme de fermeture dépendante manuelle comportant un déclencheur d'ouverture incorporé à action rapide qui fait couper le disjoncteur de façon sûre, quelles que soient la vitesse et la force avec lesquelles il est fermé, des valeurs de crête de courant présumé supérieures à 10 kA; dans ce cas, il est possible de fixer un pouvoir assigné de fermeture en court-circuit.

7.2.1.1.2 Fermeture indépendante manuelle

Dans le cas d'un disjoncteur muni d'un mécanisme de fermeture indépendante manuelle, il est possible de fixer un pouvoir assigné de fermeture en court-circuit sans tenir compte des conditions de manoeuvre mécanique.

7.2.1.1.3 Fermeture dépendante à source d'énergie extérieure

Le dispositif de fermeture, y compris, s'il y a lieu, les relais intermédiaires de commande, doit être capable d'assurer la fermeture du disjoncteur dans tous les cas, depuis le fonctionnement à vide jusqu'à celui correspondant au pouvoir assigné, de fermeture, quand la valeur de la tension d'alimentation, mesurée pendant la manoeuvre de fermeture, demeure dans les limites de 110 % et 85 % de la tension assignée d'alimentation de commande et, dans le cas du courant alternatif, à la fréquence assignée.

A 110 % de la tension assignée d'alimentation de commande, la manoeuvre de fermeture, lorsqu'elle est effectuée à vide, ne doit causer aucune détérioration au disjoncteur.

A 85 % de la tension assignée d'alimentation de commande, la manoeuvre de fermeture doit être assurée lorsque le courant établi par le disjoncteur est égal à son pouvoir assigné de fermeture dans les limites permises par le fonctionnement de ses relais ou déclencheurs et, si une valeur maximale est indiquée pour la durée de fermeture, en un temps n'excédant pas cette valeur maximale.

7.2.1.1.4 Fermeture indépendante à source d'énergie extérieure

Un disjoncteur à manoeuvre de fermeture indépendante à source d'énergie extérieure peut avoir un pouvoir assigné de fermeture en court-circuit sans tenir compte des conditions de fermeture.

Les organes moteurs des mécanismes d'accumulation, ainsi que les organes de commande de fermeture, doivent pouvoir fonctionner suivant les spécifications du constructeur.

7.2.1.1.5 Fermeture par accumulation d'énergie

Ce type de mécanisme de fermeture doit pouvoir assurer la fermeture du disjoncteur dans toute condition entre le fonctionnement à vide et son pouvoir assigné de fermeture.

Lorsque l'énergie est accumulée dans le disjoncteur, un dispositif indiquant que le mécanisme d'accumulation d'énergie est complètement armé doit être prévu.

+A2:2001

7.2.1.1.1 Dependent manual closing

For a circuit-breaker having a dependent manual closing mechanism, it is not possible to assign a short-circuit making capacity rating irrespective of the conditions of mechanical operation.

Such a circuit-breaker should not be used in circuits having a prospective peak making current exceeding 10 kA.

However, this does not apply in the case of a circuit-breaker having a dependent manual closing mechanism and incorporating an integral fast-acting opening release which causes the circuit-breaker to break safely, irrespective of the speed and firmness with which it is closed on to prospective peak currents exceeding 10 kA; in this case, a rated short-circuit making capacity can be assigned.

7.2.1.1.2 Independent manual closing

A circuit-breaker having an independent manual closing mechanism can be assigned a short-circuit making capacity rating irrespective of the conditions of mechanical operation.

7.2.1.1.3 Dependent power closing

The power-operated closing mechanism, including intermediate control relays where necessary, shall be capable of securing the closing of the circuit-breaker in any condition between no-load and its rated making capacity, when the supply voltage, measured during the closing operation, remains between the limits of 110 % and 85 % of the rated control supply voltage, and, when a.c., at the rated frequency.

At 110 % of the rated control supply voltage, the closing operation performed on no-load shall not cause any damage to the circuit-breaker.

At 85 % of the rated control supply voltage, the closing operation shall be performed when the current established by the circuit-breaker is equal to its rated making capacity within the limits allowed by the operation of its relays or releases and, if a maximum time limit is stated for the closing operation, in a time not exceeding this maximum time limit.

7.2.1.1.4 Independent power closing

A circuit-breaker having an independent power closing operation can be assigned a rated short-circuit making capacity irrespective of the conditions of power closing.

Means for charging the operating mechanism, as well as the closing control components, shall be capable of operating in accordance with the manufacturer's specification.

7.2.1.1.5 Stored energy closing

This type of closing mechanism shall be capable of ensuring closing of the circuit-breaker in any condition between no-load and its rated making capacity.

When the stored energy is retained within the circuit-breaker, a device shall be provided which indicates when the storing mechanism is fully charged.

Les organes moteurs des mécanismes d'accumulation, ainsi que les organes de commande de fermeture, doivent être capables de fonctionner lorsque leur tension d'alimentation auxiliaire est comprise entre 85 % et 110 % de la valeur de la tension assignée d'alimentation de commande.

Les contacts mobiles ne doivent pas pouvoir s'écarter de la position d'ouverture sans que l'énergie soit suffisante pour effectuer entièrement la manoeuvre de fermeture de façon satisfaisante.

Lorsque le mécanisme d'accumulation d'énergie est à commande manuelle, le sens dans lequel s'effectue cette manoeuvre doit être indiqué.

Cette dernière prescription ne s'applique pas aux disjoncteurs ayant une manoeuvre de fermeture indépendante manuelle.

7.2.1.2 Ouverture

7.2.1.2.1 Généralités

Les disjoncteurs dont l'ouverture est automatique doivent être à déclenchement libre, sauf accord contraire entre le constructeur et l'utilisateur, et l'énergie nécessaire à leur déclenchement doit être emmagasinée avant l'achèvement de la manoeuvre de fermeture.

7.2.1.2.2 Ouverture par déclencheurs à minimum de tension

Le 7.2.1.3 de la première partie est applicable.

7.2.1.2.3 Ouverture par déclencheurs shunt

Le 7.2.1.4 de la première partie est applicable.

7.2.1.2.4 Ouverture par déclencheurs à maximum de courant

a) Ouverture en condition de court-circuit

Le déclencheur de court-circuit doit provoquer le déclenchement du disjoncteur avec une précision de ±20 % de la valeur du courant de déclenchement du courant de réglage pour toutes les valeurs du courant de réglage du déclencheur de courant de court-circuit.

Si cela est nécessaire pour la coordination relative aux surintensités (voir 2.17), le constructeur doit fournir des informations (habituellement des courbes) indiquant:

- la valeur maximale de crête du courant coupé limité (voir 2.5.19 de la première partie)
 en fonction du courant présumé (valeur efficace périodique);
- la caractéristique l²t (voir 2.18) pour les disjoncteurs de catégorie d'emploi A et, le cas échéant, B pour les disjoncteurs à commande instantanée (voir note de 8.3.5).

La conformité à ces informations peut être vérifiée au cours des essais de type des séquences d'essais II et III (voir 8.3.4 et 8.3.5).

NOTE On peut fournir d'autres sortes de données pour vérifier les caractéristiques de coordination des disjoncteurs, par exemple des essais portant sur des combinaisons de dispositifs de protection contre les courts-circuits.

b) Ouverture en conditions de surcharge

Fonctionnement instantané ou à retard indépendant

Le déclencheur doit fonctionner avec une précision de ±10 % de la valeur du courant de déclenchement du courant de réglage pour toutes les valeurs du courant de réglage du déclencheur de surcharge.

- 51 -

Means for charging the operating mechanism, as well as the closing control components, shall be capable of operating when the auxiliary supply voltage is between 85 % and 110 % of the rated control supply voltage.

It shall not be possible for the moving contacts to move from the open position unless the charge is sufficient for satisfactory completion of the closing operation.

When the energy storing mechanism is manually operated, the direction of operation shall be indicated.

This last requirement does not apply to circuit-breakers with an independent manual closing operation.

7.2.1.2 **Opening**

7.2.1.2.1 General

Circuit-breakers which open automatically shall be trip-free and, unless otherwise agreed between manufacturer and user, shall have their energy for the tripping operation stored prior to the completion of the closing operation.

7.2.1.2.2 Opening by undervoltage releases

Subclause 7.2.1.3 of Part 1 applies.

7.2.1.2.3 Opening by shunt releases

Subclause 7.2.1.4 of Part 1 applies.

7.2.1.2.4 Opening by over-current releases

a) Opening under short-circuit conditions

The short-circuit release shall cause tripping of the circuit-breaker with an accuracy of ±20 % of the tripping current value of the current setting for all values of the current setting of the short-circuit current release.

Where necessary for over-current co-ordination (see 2.17), the manufacturer shall provide information (usually curves) showing

- maximum cut-off (let-through) peak current (see 2.5.19 of Part 1) as a function of prospective current (r.m.s. symmetrical);
- I^2t characteristics (see 2.18) for circuit-breakers of utilization category A and, if applicable, B for circuit-breakers with instantaneous override (see note to 8.3.5).

Conformity with this information may be checked during the relevant type tests in test sequences II and III (see 8.3.4 and 8.3.5).

NOTE It may be possible to provide other forms of data to verify co-ordination characteristics of circuit-breakers, for example, tests on combinations of short-circuit protective devices.

b) Opening under overload conditions

1) Instantaneous or definite time-delay operation

The release shall cause tripping of the circuit-breaker with an accuracy of ± 10 % of the tripping current value of the current setting for all values of current setting of the overload release.

2) Fonctionnement à temps inverse

Les valeurs conventionnelles de fonctionnement à temps inverse figurent au tableau 6.

A la température de référence (voir 4.7.3) et à 1,05 fois le courant de réglage (voir 2.4.37 de la première partie), c'est-à-dire au courant conventionnel de non-déclenchement (voir 2.5.30 de la première partie), le déclencheur d'ouverture étant alimenté sur tous les pôles de phase, le déclenchement ne doit pas se produire en un laps de temps inférieur à la durée conventionnelle (voir 2.5.30 de la première partie) à partir de l'état froid, c'est-à-dire avec le disjoncteur à la température de référence.

De plus, quand, à l'expiration du temps conventionnel, la valeur du courant est immédiatement portée à 1,30 fois le courant de réglage, c'est-à-dire au courant conventionnel de déclenchement (voir 2.5.31 de la première partie), le déclenchement doit se produire ensuite dans un laps de temps inférieur au temps conventionnel.

NOTE La température de référence est la température ambiante sur laquelle est fondée la caractéristique temps/courant du disjoncteur.

Tableau 6 – Caractéristiques d'ouverture des déclencheurs d'ouverture à maximum de courant à temps inverse à la température de référence

Tous les pôle	Temps conventionnel	
Courant conventionnel de non-déclenchement	Courant conventionnel de déclenchement	h
1,05 fois le courant de réglage	1,30 fois le courant de réglage	2*
* 1 h pour $I_n \le 63$ A.		

Si le constructeur déclare qu'un déclencheur est sensiblement indépendant de la température ambiante, les valeurs de courant du tableau 6 doivent s'appliquer à l'intérieur du domaine de températures annoncé par le constructeur, avec une variation ne dépassant pas 0,3 %/K.

L'étendue du domaine de températures doit être au moins égale à 10 K de part et d'autre de la température de référence.

7.2.2 Echauffement

7.2.2.1 Limites d'échauffement

Les échauffements des différents organes d'un disjoncteur, mesurés dans les conditions prescrites au 8.3.2.5, ne doivent pas dépasser les valeurs limites indiquées au tableau 7, au cours des essais effectués conformément au 8.3.3.6. Les échauffements des bornes ne doivent pas dépasser les valeurs limites figurant au tableau 7 durant les essais effectués conformément aux 8.3.4.3 et 8.3.6.3.

7.2.2.2 Température de l'air ambiant

Les limites d'échauffement indiquées au tableau 7 ne sont valables que si la température de l'air ambiant reste comprise entre les limites indiquées au 6.1.1 de la première partie.

7.2.2.3 Circuit principal

Le circuit principal d'un disjoncteur, y compris les déclencheurs à maximum de courant pouvant lui être associés, doit pouvoir supporter le courant thermique conventionnel de l'appareil (I_{th} ou I_{the} , suivant le cas, voir 4.3.2.1 et 4.3.2.2), sans que les échauffements dépassent les limites spécifiées au tableau 7.

2) Inverse time-delay operation

Conventional values for inverse time-delay operation are given in table 6.

At the reference temperature (see 4.7.3) and at 1,05 times the current setting (see 2.4.37 of Part 1), i.e. with the conventional non-tripping current (see 2.5.30 of Part 1), the opening release being energized on all phase poles, tripping shall not occur in less than the conventional time (see 2.5.30 of Part 1) from the cold state, i.e. with the circuit-breaker at the reference temperature.

Moreover, when at the end of the conventional time the value of current is immediately raised to 1,30 times the current setting, i.e. with the conventional tripping current (see 2.5.31 of Part 1), tripping shall then occur in less than the conventional time later.

NOTE The reference temperature is the ambient air temperature on which the time-current characteristic of the circuit-breaker is based.

Table 6 – Characteristics of the opening operation of inverse time-delay over-current opening releases at the reference temperature

All pole	Conventional time	
Conventional non-tripping current	Conventional tripping current	h
1,05 times current setting	1,30 times current setting	2*
* 1 hour when I _n ≤ 63 A		

If a release is declared by the manufacturer as substantially independent of ambient temperature, the current values of table 6 shall apply within the temperature band declared by the manufacturer, within a tolerance of 0,3 %/K.

The width of the temperature band shall be at least 10 K on either side of the reference temperature.

7.2.2 Temperature-rise

7.2.2.1 Temperature-rise limits

The temperature-rises of the several parts of a circuit-breaker, measured under the conditions specified in 8.3.2.5, shall not exceed the limiting values stated in table 7, during the tests made in accordance with 8.3.3.6. The temperature-rises of the terminals shall not exceed the limiting values stated in table 7 during the tests made in accordance with 8.3.4.3 and 8.3.6.3.

7.2.2.2 Ambient air temperature

The temperature-rise limits given in table 7 are applicable only if the ambient air temperature remains within the limits given in 6.1.1 of Part 1.

7.2.2.3 Main circuit

The main circuit of a circuit-breaker, including the over-current releases which may be associated with it, shall be capable of carrying the conventional thermal current (I_{th} or I_{the} , as applicable, see 4.3.2.1 and 4.3.2.2) without the temperature-rises exceeding the limits specified in table 7.

7.2.2.4 Circuits de commande

Les circuits de commande, y compris les appareils pour circuits de commande, utilisés pour les manoeuvres de fermeture et d'ouverture d'un disjoncteur, doivent permettre de réaliser le service assigné prévu en 4.3.4 ainsi que d'effectuer les essais d'échauffement spécifiés en 8.3.2.5, sans que les échauffements dépassent les limites spécifiées au tableau 7.

Les prescriptions de ce paragraphe doivent être vérifiées sur un disjoncteur neuf. D'une autre façon, si le constructeur le souhaite, la vérification peut être faite pendant l'essai d'échauffement de 8.3.3.6.

7.2.2.5 Circuits auxiliaires

Les circuits auxiliaires, y compris les dispositifs auxiliaires, doivent pouvoir supporter leur courant thermique conventionnel, sans que les échauffements dépassent les limites spécifiées au tableau 7 lorsqu'ils sont essayés selon les prescriptions de 8.3.2.5.

Tableau 7 - Limites d'échauffement des bornes et des parties accessibles

Description de l'organe *	Limites d'échauffement ** K
Bornes de raccordement à des connections extérieures	80
Organes de manoeuvre manuels: métalliques non métalliques	25 35
 Pièces destinées à être touchées en service normal: métalliques non métalliques 	40 50
 Pièces qui ne demandent pas à être touchées en service normal: métalliques non métalliques 	50 60

^{*} Aucune valeur n'est précisée pour les pièces autres que celles énumérées ci-dessus, mais aucun dommage ne devra être occasionné aux pièces voisines en matériau isolant.

7.2.3 Propriétés diélectriques

Si le constructeur a déclaré une valeur de tension assignée de tenue aux chocs ($U_{\rm imp}$), les prescriptions de 7.2.3 de la première partie sont applicables et le disjoncteur doit satisfaire aux essais diélectriques spécifiés au 8.3.3.4 de la première partie.

Si aucune valeur de tension assignée de tenue aux chocs n'a été déclarée, et pour les vérifications de la tenue diélectrique effectuées au cours des séquences d'essai, le disjoncteur doit satisfaire aux essais diélectriques spécifiés aux 8.3.3.2.1, 8.3.3.2.2, 8.3.3.2.3 et 8.3.3.2.4.

7.2.4 Aptitude à l'établissement et à la coupure à vide et dans les conditions normales de charge et de surcharge

7.2.4.1 Fonctionnement en surcharge

Cette prescription ne s'applique qu'aux disjoncteurs de courant assigné ne dépassant pas 630 A.

Le disjoncteur doit être capable d'effectuer le nombre de cycles de manoeuvres prévu dans les conditions d'essai de 8.3.3.4, le courant dans le circuit principal étant supérieur à son courant assigné.

^{**} Les limites d'échauffement spécifiées ne sont pas celles qui s'appliquent à un échantillon à l'état neuf, mais sont celles qui s'appliquent aux vérifications de l'échauffement au cours des séquences d'essai appropriées spécifiées à l'article 8.

+A2:2001

7.2.2.4 Control circuits

The control circuits, including control circuit devices, used for the closing and opening operations of a circuit-breaker, shall permit the rated duty, as specified in 4.3.4, and also the temperature-rise tests under the test conditions specified in 8.3.2.5, to be made without the temperature rises exceeding the limits specified in table 7.

The requirements of this subclause shall be verified on a new circuit-breaker. Alternatively, at the discretion of the manufacturer, the verification may be made during the temperature-rise test of 8.3.3.6.

7.2.2.5 Auxiliary circuits

Auxiliary circuits, including auxiliary devices, shall be capable of carrying their conventional thermal current without the temperature-rises exceeding the limits specified in table 7, when tested in accordance with 8.3.2.5.

Table 7 – Temperature-rise limits for terminals and accessible parts

Description of part *	Temperature-rise limits ** K
- Terminals for external connections	80
- Manual operating means: metallic non-metallic	25 35
- Parts intended to be touched but not hand-held: metallic non-metallic	40 50
- Parts which need not be touched for normal operation: metallic non-metallic	50 60

No value is specified for parts other than those listed but no damage should be caused to adjacent parts of insulating materials.

7.2.3 Dielectric properties

If the manufacturer has declared a value of rated impulse withstand voltage (U_{imp}) , the requirements of 7.2.3 of Part 1 apply and the circuit-breaker shall satisfy the dielectric tests specified in 8.3.3.4 of Part 1.

If no value of rated impulse withstand voltage has been declared, and for the verifications of dielectric withstand made during test sequences, the circuit-breaker shall satisfy the dielectric tests specified in 8.3.3.2.1, 8.3.3.2.2, 8.3.3.2.3 and 8.3.3.2.4.

Ability to make and break under no load, normal load and overload conditions

7.2.4.1 Overload performance

This requirement applies to circuit-breakers of rated current up to and including 630 A.

The circuit-breaker shall be capable of carrying out the number of operating cycles with current in the main circuit exceeding its rated current, under the test conditions according to 8.3.3.4.

The temperature-rise limits specified are not intended to apply to a new sample, but are those applicable to the temperature-rise verifications during the appropriate test sequences specified in clause 8.

+A2:2001

Chaque cycle de manoeuvre consiste en une manoeuvre de fermeture suivie d'une manoeuvre de coupure.

- 56 -

7.2.4.2 Aptitude au fonctionnement en service

Le 7.2.4.2 de la première partie est applicable avec le complément suivant:

Le disjoncteur doit être capable de satisfaire aux prescriptions du tableau 8:

- pour l'essai de fonctionnement en service sans courant dans le circuit principal dans les conditions d'essai précisées au 8.3.3.3;
- pour l'essai de fonctionnement en service avec courant dans le circuit principal dans les conditions d'essai précisées au 8.3.3.4.

Chaque cycle de manoeuvre consiste, soit en une manoeuvre de fermeture suivie d'une manoeuvre d'ouverture (essai de fonctionnement en service sans courant), soit en une manoeuvre d'établissement suivie d'une manoeuvre de coupure (essai de fonctionnement en service avec courant).

1	2	3	4	5
Courant assigné *	Nombre de cycles	Nombre de cycles de manoeuvres		
Α	de manoeuvre par heure **	Sans courant	Avec courant ***	Total
<i>I</i> _n ≤ 100	120	8 500	1 500	10 000
100 < <i>I</i> _n ≤ 315	120	7 000	1 000	8 000
315 < <i>I</i> _n ≤ 630	60	4 000	1 000	5 000
630 $< I_{n} \le 2500$	20	2 500	500	3 000
2 500 < I _n	10	1 500	500	2 000

Tableau 8 – Nombre de cycles de manoeuvres

7.2.5 Aptitude à l'établissement et à la coupure en condition de court-circuit

Le 7.2.5 de la première partie est applicable avec les développements suivants:

Le pouvoir assigné de fermeture en court-circuit doit être conforme aux 4.3.5.1 et 4.3.5.3.

Le pouvoir assigné de coupure en court-circuit doit être conforme au 4.3.5.2.

Le courant assigné de courte durée admissible doit être conforme au 4.3.5.4.

NOTE Le constructeur a la responsabilité d'assurer que la caractéristique de déclenchement du disjoncteur est compatible avec l'aptitude de celui-ci à supporter les contraintes thermiques et électrodynamiques inhérentes.

7.2.6 Disponible

7.2.7 Prescriptions complémentaires pour les disjoncteurs aptes au sectionnement

Les disjoncteurs aptes au sectionnement doivent satisfaire aux essais de 8.3.3.2, 8.3.3.5, 8.3.3.9, 8.3.4.3, 8.3.5.3 et 8.3.7.7, selon le cas.

Signifie le courant maximal assigné pour une taille physique donnée.

La colonne 2 indique la cadence de manoeuvre minimale. Cette cadence peut être augmentée avec l'agrément du constructeur; dans ce cas, la cadence utilisée doit être mentionnée dans le compte rendu d'essais.

^{***} Au cours de chaque cycle de manoeuvres, le disjoncteur doit rester en position de fermeture pendant une durée suffisante pour assurer que le courant soit pleinement établi, mais ne dépassant pas 2 s.

– 57 *–*

Each operating cycle consists of a making operation followed by a breaking operation.

7.2.4.2 Operational performance capability

Subclause 7.2.4.2 of Part 1 applies with the following additions:

The circuit-breaker shall be capable of meeting the requirements of table 8:

- for the test of operational performance without current in the main circuit under the test conditions specified in 8.3.3.3.3;
- for the test of operational performance with current in the main circuit under the test conditions specified in 8.3.3.3.4.

Each operating cycle consists of, either a closing operation followed by an opening operation (test of operational performance without current), or a making operation followed by a breaking operation (test of operational performance with current).

1	2	3	4	5
Rated current *	Number of operating	Nu	mber of operating cy	rcles
Α	cycles per hour **	Without current	With current ***	Total
<i>I</i> _n ≤ 100	120	8 500	1 500	10 000
100 $ I_{n \leq } 315 $	120	7 000	1 000	8 000
315 $ I_n $	60	4 000	1 000	5 000
630 $ < I_{\rm n} \le 2500 $	20	2 500	500	3 000
2 500 < In	10	1 500	500	2 000

Table 8 – Number of operating cycles

7.2.5 Ability to make and break under short-circuit conditions

Subclause 7.2.5 of Part 1 applies with the following amplifications:

The rated short-circuit making capacity shall be in accordance with 4.3.5.1 and 4.3.5.3.

The rated short-circuit breaking capacity shall be in accordance with 4.3.5.2.

The rated short-time withstand current shall be in accordance with 4.3.5.4.

NOTE It is the manufacturer's responsibility to ensure that the tripping characteristic of the circuit-breaker is compatible with the capability of the circuit-breaker to withstand the inherent thermal and electrodynamic stresses.

7.2.6 Vacant

7.2.7 Additional requirements for circuit-breakers suitable for isolation

Circuit-breakers suitable for isolation shall comply with the tests of 8.3.3.2, 8.3.3.5, 8.3.3.9, 8.3.4.3, 8.3.5.3 and 8.3.7.7, as applicable.

^{*} This means the maximum rated current for a given frame size.

^{**} Column 2 gives the minimum operating rate. This rate may be increased with the consent of the manufacturer; in this case the rate used shall be stated in the test report.

^{***} During each operating cycle, the circuit-breaker shall remain closed for a sufficient time to ensure that the full current is established, but not exceeding 2 s.

7.2.8 Prescriptions particulières pour les disjoncteurs à fusibles incorporés

NOTE Pour la coordination des disjoncteurs et des fusibles séparés associés dans un même circuit, voir 7.2.9.

Un disjoncteur à fusibles incorporés doit être conforme à la présente norme à tous égards jusqu'au pouvoir assigné de coupure ultime en court-circuit. En particulier, il doit répondre aux prescriptions de la séquence d'essais V (voir 8.3.7).

Le disjoncteur doit fonctionner, sans provoquer le fonctionnement des fusibles, en présence de surintensités ne dépassant pas le courant limite de sélectivité I_s , déclaré par le constructeur.

Pour toutes les surintensités jusqu'à et y compris le pouvoir assigné de coupure ultime en court-circuit attribué à l'ensemble, le disjoncteur doit s'ouvrir lorsqu'un ou plusieurs fusibles fonctionnent (pour éviter l'alimentation sur une seule phase). Si le constructeur déclare que le disjoncteur est à fermeture empêchée (voir 2.14), il ne doit pas être possible de refermer le disjoncteur tant que n'auront pas été remplacés, soit les éléments de remplacement fondus, soit tout élément de remplacement manquant ou que les dispositifs de verrouillage n'auront pas été réglés à nouveau.

7.2.9 Coordination entre un disjoncteur et un autre dispositif de protection contre les courts-circuits

Pour la coordination entre un disjoncteur et un autre dispositif de protection contre les courtscircuits, voir l'annexe A.

7.3 Compatibilité électromagnétique (CEM)

NOTE Un index des prescriptions et des essais correspondants est donné à l'annexe J.

7.3.1 Généralités

NOTE Le paragraphe 7.3.1 de la CEI 60947-1 est actuellement en révision. En particulier, les environnements 1 et 2 seront respectivement appelés environnements B et A pour être en accord avec le CISPR. Cela a été pris en considération dans le présent amendement.

Deux classes de conditions environnementales sont considérées et sont désignées comme suit:

- a) environnement A;
- b) environnement B.

Environnement A: désigne les réseaux/emplacements/installations à basse tension non publics comprenant des sources fortement perturbatrices.

- NOTE 1 L'environnement A correspond à des matériels de classe A dans le CISPR 11 et le CISPR 22.
- NOTE 2 Les matériels correspondant à l'environnement A peuvent créer des perturbations électromagnétiques lorsqu'ils sont installés dans un environnement B.

Environnement B: désigne les réseaux publics à basse tension comme les emplacements/installations domestiques, commerciales et de l'industrie légère. Des sources fortement perturbatrices telles que des soudeuses à l'arc ne sont pas couvertes par cet environnement.

NOTE 3 L'environnement B correspond à des matériels de classe B dans le CISPR 11 et le CISPR 22.

NOTE 4 Les matériels correspondant à l'environnement B ne causeront pas de perturbations électromagnétiques lorsqu'ils sont installés dans un environnement A.

7.3.2 Immunité

Les disjoncteurs doivent avoir une immunité satisfaisante aux perturbations électromagnétiques.

Pour les besoins de cette norme, l'immunité aux champs électromagnétiques à fréquence industrielle est considérée comme couverte par les essais correspondants de 8.3 qu'il n'est pas nécessaire de répéter (par exemple essais de surcharge et de court-circuit).

+A2:2001

7.2.8 Specific requirements for integrally fused circuit-breakers

NOTE For the co-ordination between circuit-breakers and separate fuses associated in the same circuit, see 7.2.9.

An integrally fused circuit-breaker shall comply with this standard in all respects up to the rated ultimate short-circuit breaking capacity. In particular, it shall meet the requirements of test sequence V (see 8.3.7).

The circuit-breaker shall function, without causing the fuses to operate, at the occurrence of over-currents not exceeding the selectivity limit current I_s declared by the manufacturer.

For all over-currents up to and including the rated ultimate short-circuit breaking capacity assigned to the composite unit, the circuit-breaker shall open when one or more fuses operate (in order to prevent single-phasing). If the circuit-breaker is stated by the manufacturer to be with lock-out device preventing closing (see 2.14), it shall not be possible to reclose the circuit-breaker until either the melted fuse-links or any missing fuse-links have been replaced or the lock-out means has been reset.

7.2.9 Coordination between a circuit-breaker and another short-circuit protective device

For the coordination between a circuit-breaker and another short-circuit protective device, see annex A.

7.3 Electromagnetic compatibility (EMC)

NOTE An index of the relevant requirements and tests is given in annex J.

7.3.1 General

NOTE Subclause 7.3.1 of IEC 60947-1 is presently under revision. In particular, environments 1 and 2 will be referred to as environments B and A respectively, to be in line with CISPR. This has been taken into consideration in this amendment.

Two sets of environmental conditions are considered and are referred to as follows:

- a) environment A;
- b) environment B.

Environment A: relates to low-voltage non-public or industrial networks/locations/installations including highly disturbing sources.

- NOTE 1 Environment A corresponds to equipment class A in CISPR 11 and CISPR 22.
- NOTE 2 Environment A equipment can cause electromagnetic disturbances when installed in environment B.

Environment B: relates to low-voltage public networks such as domestic, commercial and light industrial locations/installations. Highly disturbing sources such as arc welders are not covered by this environment.

- NOTE 3 Environment B corresponds to equipment class B in CISPR 11 and CISPR 22.
- NOTE 4 Environment B equipment will not cause electromagnetic disturbances when installed in environment A.

7.3.2 Immunity

Circuit-breakers shall have satisfactory immunity to electromagnetic disturbances.

For the purpose of this standard, immunity to power frequency electromagnetic fields is considered covered by the relevant tests of 8.3 which need not be repeated (e.g. overload and short-circuit tests).

7.3.2.1 Disjoncteurs ne comprenant pas de circuits électroniques

Le paragraphe 7.3.2.1 de la partie 1 s'applique.

NOTE Le besoin de prescriptions pour des déclencheurs à haute sensibilité pour des disjoncteurs selon l'annexe B non associés à des circuits électroniques est à l'étude.

7.3.2.2 Disjoncteurs comprenant des circuits électroniques

Le paragraphe 7.3.2.2 de la partie 1 est applicable avec le complément suivant:

L'annexe B couvre les prescriptions d'essai d'immunité pour les DPR.

L'annexe F couvre les prescriptions d'essai d'immunité pour les disjoncteurs avec protection électronique contre les surintensités.

Dans tous les autres cas, les essais doivent être effectués selon 8.3.9.

7.3.3 Emission

7.3.3.1 Disjoncteurs ne comprenant pas de circuits électroniques

Le paragraphe 7.3.3.1 de la partie 1 s'applique.

7.3.3.2 Disjoncteurs comprenant des circuits électroniques

Le paragraphe 7.3.3.2 de la partie 1 est applicable avec les compléments suivants:

7.3.3.2.1 Disjoncteurs comprenant des circuits électroniques ne contenant pas d'oscillateurs fonctionnant pendant des périodes étendues

NOTE Une période étendue est une période supérieure à 40 ms.

Ces disjoncteurs ne produisent pas de perturbations continues mais seulement des perturbations transitoires pendant la commutation. La fréquence et les conséquences de ces perturbations transitoires sont considérées comme faisant partie de l'environnement électromagnétique normal des installations à basse tension et aucune mesure n'est nécessaire.

7.3.3.2.2 Disjoncteurs comprenant des circuits électroniques contenant des circuits oscillants fonctionnant pendant des périodes étendues

L'annexe B donne les détails concernant les prescriptions et les essais d'émission pour les DPR.

L'annexe F donne les détails concernant les prescriptions et les essais d'émission pour les disjoncteurs avec protection électronique contre les surintensités.

8 Essais

8.1 Nature des essais

Le 8.1 de la première partie est applicable avec les compléments suivants:

8.1.1 Les essais destinés à vérifier les caractéristiques des disjoncteurs sont:

- les essais de type (voir 8.3);
- les essais individuels ou sur prélèvement (voir 8.4).

+A2:2001

7.3.2.1 Circuit-breakers not incorporating electronic circuits

Subclause 7.3.2.1 of part 1 applies.

NOTE The need for requirements for highly sensitive releases for circuit-breakers according to annex B not associated with electronic circuits is under consideration.

7.3.2.2 Circuit-breakers incorporating electronic circuits

Subclause 7.3.2.2 of part 1 applies with the following addition:

Annex B covers the immunity test requirements for CBRs.

Annex F covers the immunity test requirements for circuit-breakers with electronic overcurrent protection.

In all other cases tests shall be made in accordance with 8.3.9.

7.3.3 Emission

7.3.3.1 Circuit-breakers not incorporating electronic circuits

Subclause 7.3.3.1 of part 1 applies.

7.3.3.2 Circuit-breakers incorporating electronic circuits

Subclause 7.3.3.2 of part 1 applies, but is amplified as follows:

7.3.3.2.1 Circuit-breakers incorporating electronic circuits not including oscillators operating for extended periods

NOTE An extended period is a period greater than 40 ms.

These circuit-breakers do not generate continuous disturbances and only generate transient disturbances during switching. The frequency and the consequences of these transient disturbances are considered as part of the normal electromagnetic environment of low-voltage installations and no measurements are necessary.

7.3.3.2.2 Circuit-breakers incorporating electronic circuits including oscillators operating for extended periods

Annex B details the emission requirements and tests for CBRs.

Annex F details the emission requirements and tests for circuit-breakers with electronic overcurrent protection.

8 Tests

8.1 Kind of tests

Subclause 8.1 of Part 1 applies, with the following additions:

- 8.1.1 The tests to verify the characteristics of circuit-breakers are:
- type tests (see 8.3);
- routine or sampling tests (see 8.4).

8.1.2 Les essais de type comprennent les essais suivants:

Essai	Paragraphe
Echauffement	8.3.2.5
Limites et caractéristiques de déclenchement	8.3.3.1
Propriétés diélectriques	8.3.3.2
Aptitude au fonctionnement en service	8.3.3.3
Fonctionnement en surcharge (le cas échéant)	8.3.3.4
Pouvoirs de coupure en court-circuit	8.3.4 et 8.3.5
Courant de courte durée admissible (le cas échéant)	8.3.6
Fonctionnement des disjoncteurs à fusibles incorporés	8.3.7

Les essais de type doivent être effectués par le constructeur dans ses ateliers ou dans un laboratoire approprié de son choix.

8.1.3 Les essais individuels ou les essais sur prélèvement comprennent les essais suivants:

Essal	Paragraphe	
Fonctionnement mécanique	8.4.1	
Etalonnage de déclencheurs	8.4.2	
Tenue diélectrique	8.4.3	
NOTE Les essais sur prélèvement pour la vérification des distances d'isolement, conformément à 8.3.3.4.3 de la première partie sont à l'étude.		

8.2 Conformité aux dispositions constructives

Le 8.2 de la première partie est applicable (voir cependant la note de 7.1).

8.3 Essais de type

Pour éviter la répétition de textes identiques concernant les différentes séquences d'essais, les conditions générales d'essai ont été groupées au début du présent paragraphe sous les trois titres:

- conditions d'essai applicables à toutes les séquences (8.3.2.1 à 8.3.2.4);
- conditions d'essai applicables aux essais d'échauffement (8.3.2.5);
- conditions d'essai applicables aux essais de court-circuit (8.3.2.6).

Dans la mesure du possible, ces conditions générales d'essai se réfèrent aux règles générales de la première partie ou sont fondées sur celles-ci.

Chaque séquence d'essais se réfère aux conditions générales d'essai qui sont applicables. Cela demande l'emploi de références, mais permet de présenter chaque séquence d'essais sous une forme très simplifiée.

Le terme «essai» est utilisé dans tout cet article pour chaque essai à effectuer; il convient d'interpréter le terme «vérification» dans le sens de «essai de vérification», qui est utilisé là où il est destiné à vérifier l'état du disjoncteur après un essai précédent au cours d'une séquence d'essais où le disjoncteur aurait pu être avarié.

Un index alphabétique est donné au 8.3.1 pour situer plus facilement une condition d'essai ou un essai. Cet index comprend les termes qui seront le plus vraisemblablement employés (pas forcément les termes exacts qui figurent dans le titre des paragraphes correspondants).

8.1.2 Type tests include the following tests:

Test	Subclause
Temperature-rise	8.3.2.5
Tripping limits and characteristics	8.3.3.1
Dielectric properties	8.3.3.2
Operational performance capability	8.3.3.3
Overload performance (where applicable)	8.3.3.4
Short-circuit breaking capacities	8.3.4 and 8.3.5
Short-time withstand current (where applicable)	8.3.6
Performance of integrally fused circuit-breakers	8.3.7

Type tests shall be carried out by the manufacturer, in his workshop or at any suitable laboratory of his choice.

8.1.3 Routine or sampling tests include the following tests:

Test	Subclause			
Mechanical operation	8.4.1			
Calibration of releases	8.4.2			
Dielectric withstand	8.4.3			
NOTE Sampling tests for clearance verification according to 8.3.3.4.3 of Part 1 are under consideration.				

8.2 Compliance with constructional requirements

Subclause 8.2 of Part 1 applies (see however note of 7.1).

8.3 Type tests

In order to avoid repetition of identical tests applicable to the various test sequences, the general test conditions have been grouped together at the beginning of this subclause under three headings:

- test conditions applicable to all sequences (8.3.2.1 to 8.3.2.4);
- test conditions applicable to temperature-rise tests (8.3.2.5);
- test conditions applicable to short-circuit tests (8.3.2.6).

Wherever appropriate, these general test conditions refer back to, or are based on, the general rules of Part 1.

Each test sequence refers back to the general test conditions applicable. This requires the use of cross-references, but enables each test sequence to be presented in a much simplified form.

Throughout this clause the term "test" has been used for every test to be made; "verification" should be interpreted as "test for the verification" and has been used where it is intended to verify the condition of the circuit-breaker following an earlier test in a test sequence whereby it may have been adversely affected.

In order to facilitate locating a particular test condition or test, an alphabetical index is given in 8.3.1, using the terms most likely to be used (not necessarily the exact terms appearing in the relevant subclause heading).

8.3.1 Séquences d'essais

Les essais de type sont groupés par séquences, comme indiqué au tableau 9.

Pour chaque séquence, les essais doivent être effectués dans l'ordre indiqué.

En référence au 8.1.1 de la première partie, les essais suivants de la séquence d'essais l (voir 8.3.3) peuvent être omis et faits sur des échantillons séparés:

- essai de propriétés diélectriques (8.3.3.2);
- essai des déclencheurs à minimum de tension de 8.3.3.3.2 (point c) et 8.3.3.3.3, afin de vérifier les prescriptions de 7.2.1.3 de la première partie;
- essai des déclencheurs shunt (8.3.3.3.2 (point d) et 8.3.3.3.3) afin de vérifier les prescriptions de 7.2.1.4 de la première partie;
- essais supplémentaires d'aptitude au fonctionnement en service sans courant pour les disjoncteurs débrochables (8.3.3.3.5).

Les séquences d'essais applicables en fonction de la relation entre $I_{\rm cs}$, $I_{\rm cu}$ et $I_{\rm csw}$ sont données au tableau 9a.

Index alphabétique des essais

Conditions générales d'essai	Paragraphes
Circuits d'essai de court-circuit	8.3.2.6.2
Constante de temps	8.3.2.2.5
Disposition des disjoncteurs, généralités	8.3.2.1
Disposition des disjoncteurs pour les essais de court-circuit	8.3.2.6.1
Essai d'échauffement	8.3.2.5
Enregistrements (interprétation des)	8.3.2.6.6
Facteur de puissance	8.3.2.2.4
Fréquence	8.3.2.2.3
Procédure d'essai en court-circuit	8.3.2.6.4
Tension de rétablissement	8.3.2.2.6
Tolérances	8.3.2.2.2
Essais (voir tableau 9 pour le schéma d'ensemble des séquences d'essais)	Paragraphes
Courant de courte durée admissible	8.3.6.2 - 8.3.8.2
Déclenchement (limites et caractéristiques de)	8.3.3.1
Déclencheurs de surcharge (vérification des)	8.3.3.7 - 8.3.4.4 - 8.3.5.1 - 8.3.5.4 - 8.3.6.1 - 8.3.6.6 - 8.3.7.4 - 8.3.7.8 - 8.3.8.1 - 8.3.8.6
Disjoncteurs débrochables (essais supplémentaires)	8.3.3.3.5
Echauffement (vérification de l')	8.3.3.6 - 8.3.4.3 - 8.3.6.3 - 8.3.7.2 - 8.3.8.5
Essai en court-circuit sur un pôle séparément (pour réseaux ayant une phase reliée à la terre)	Annexe C
Essai en court-circuit sur un pôle séparément (pour réseaux IT)	Annexe H
Fonctionnement en service (aptitude au)	8.3.3.3 - 8.3.4.2 - 8.3.4.4
Fusibles incorporés (disjoncteurs à) (essais de court-circuit)	8.3.7.1 - 8.3.7.5 - 8.3.7.6
Indication de la position des contacts principaux	8.3.3.9
Pouvoir de coupure en court-circuit au courant maximal de courte durée admissible (essai de)	8.3.6.4
Pouvoir de coupure ultime en court-circuit	8.3.5.2
Pouvoir de coupure de service en court-circuit	8.3.4.1 - 8.3.8.3
Propriétés diélectriques	8.3.3.2
Surcharge (fonctionnement en)	8.3.3.4
Tenue diélectrique (vérification de la)	8.3.3.5 - 8.3.4.3 - 8.3.5.3 - 8.3.6.5 - 8.3.7.3 - 8.3.7.7 - 8.3.8.5

8.3.1 Test sequences

Type tests are grouped together in a number of sequences, as shown in table 9.

For each sequence, tests shall be made in the order listed.

With reference to 8.1.1 of Part 1, the following tests of test sequence I (see 8.3.3) may be omitted from the sequence and made on separate samples:

- test of dielectric properties (8.3.3.2);
- test of undervoltage releases of 8.3.3.3.2 (item c) and 8.3.3.3.3, to verify the requirements of 7.2.1.3 of Part 1;
- test of shunt trip releases of 8.3.3.3.2 (item d) and 8.3.3.3.3, to verify the requirements of 7.2.1.4 of Part 1;
- additional tests for operational capability without current for withdrawable circuit-breakers (8.3.3.3.5).

The applicability of test sequences according to the relationship between I_{cs} , I_{cu} and I_{cw} is given in table 9a.

Alphabetical index of tests

General test conditions	Subclause
Arrangement of circuit-breakers, general	8.3.2.1
Arrangement of circuit-breakers for short-circuit tests	8.3.2.6.1
Frequency	8.3.2.2.3
Power factor	8.3.2.2.4
Records (interpretation of)	8.3.2.6.6
Recovery voltage	8.3.2.2.6
Short-circuit test circuits	8.3.2.6.2
Short-circuit test procedure	8.3.2.6.4
Temperature-rise test	8.3.2.5
Time constant	8.3.2.2.5
Tolerances	8.3.2.2.2
Tests (for overall schema of test sequences, see table 9)	Subclause
Dielectric properties	8.3.3.2
Dielectric withstand (verification)	8.3.3.5 - 8.3.4.3 - 8.3.5.3 -
	8.3.6.5 - 8.3.7.3 - 8.3.7.7 - 8.3.8.5
Individual pole short-circuit test (for phase-earthed systems)	Annex C
Individual pole short-circuit test (for IT systems)	Annex H
Indication of main contact position	8.3.3.9
Integrally fused circuit-breakers (short-circuit tests)	8.3.7.1 - 8.3.7.5 - 8.3.7.6
Operational performance capability	8.3.3.3 - 8.3.4.2 - 8.3.4.4
Overload performance	8.3.3.4
Overload releases (verification)	8.3.3.7 - 8.3.4.4 - 8.3.5.1 -
	8.3.5.4 - 8.3.6.1 - 8.3.6.6 - 8.3.7.4 -
	8.3.7.8 - 8.3.8.1 - 8.3.8.6
Service short-circuit breaking capacity	8.3.4.1 - 8.3.8.3
Short-circuit breaking capacity test at maximum short-time withstand current	8.3.6.4
Short-time withstand current	8.3.6.2 - 8.3.8.2
Temperature-rise (verification)	8.3.3.6 - 8.3.4.3 - 8.3.6.3 -
	8.3.7.2 - 8.3.8.5
Tripping limits and characteristics	8.3.3.1
Ultimate short-circuit breaking capacity	8.3.5.2
Withdrawable circuit-breakers (additional tests)	8.3.3.5

Tableau 9 – Schéma d'ensemble des séquences d'essais 1)

Séquence d'	essals	Validité	Essais
I Caractéristiqu générales de fonctionneme (8.3.3)		Tous les disjoncteurs	Limites et caractéristiques de déclenchement Propriétés diélectriques Fonctionnement mécanique et aptitude au fonctionnement en service Fonctionnement en surcharge (le cas échéant) Vérification de la tenue diélectrique Vérification de l'échauffement Vérification des déclencheurs de surcharge Vérification de la position des contacts principaux (le cas échéant)
Pouvoir assig coupure de se en court-circu (8.3.4)	ervice	Tous les disjoncteurs ²⁾ Tous les disjoncteurs ³⁾ de	Pouvoir assigné de coupure de service en court-circuit Vérification de la tenue diélectrique Vérification de l'échauffement Vérification des déclencheurs de surcharge Aptitude au fonctionnement Vérification des déclencheurs de surcharge
Pouvoir assig coupure ultim court-circuit (8.3.5)		catégorie d'emploi A et disjoncteurs de catégorie d'emploi B à commande instantanée*	Pouvoir assigné de coupure ultime en court-circuit Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge
IV Courant assig de courte dure admissible (8.3.6)		Disjoncteurs de catégorie d'emploi B ²)	Vérification des déclencheurs de surcharge Courant assigné de courte durée admissible Vérification de l'échauffement Pouvoir de coupure en court-circuit au courant assigné de courte durée admissible maximal Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge
V Disjoncteurs a fusibles incor (8.3.7)		Première étape Disjoncteurs à fusibles incorporés Deuxième étape	Court-circuit au courant limite de sélectivité Vérification de l'échauffement Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge Court-circuit au courant d'intersection Court circuit au pouvoir assigné de coupure ultime en court-circuit Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge
Séquence d'e combinée (8.3		Disjoncteurs de catégorie d'emploi B: avec $I_{\text{CW}} = I_{\text{CS}}$ (remplace les séquences d'essais II et IV) avec $I_{\text{CW}} = I_{\text{CS}} = I_{\text{CU}}$ (remplace les séquences d'essais II, III et IV)	Vérification des déclencheurs de surcharge Courant assigné de courte durée admissible Pouvoir assigné de coupure de service en court-circuit Vérification de la tenue diélectrique Vérification de l'échauffement Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge Aptitude au fonctionnement
Séquence d'e en court-circu un pôle sépar (annexe C) Séquence d'e en court-circu un pôle sépar (annexe H)	iit sur rément essais uit sur	Disjoncteur pour emploi sur réseaux ayant une liaison phase-terre Disjoncteur pour emploi sur réseaux IT	Pouvoir de coupure en court-circuit sur un pôle séparément (I _{su}) Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge Pouvoir de coupure en court-circuit sur un pôle séparément (I _{IT}) Vérification de la tenue diélectrique Vérification des déclencheurs de surcharge

^{*} Voir note de 8.3.5

¹⁾ Pour le choix des disjoncteurs pour les essais et les différentes séquences d'essais applicables en fonction de la relation entre $I_{\rm CS}$, $I_{\rm CU}$ et $I_{\rm CW}$, voir le tableau 9a.

²⁾ Sauf lorsque la séquence d'essais combinée est appliquée.

³⁾ Et sauf – quand $I_{CS} = I_{CU}$ (mais voir 8.3.5);

⁻ quand la séquence d'essais combinée est appliquée;

⁻ pour les disjoncteurs à fusibles incorporés.

Table 9 – Overall schema of test sequences 1)

Test sequence	Applicable to	Tests		
General performance	All circuit-breakers	Tripping limits and characteristics Dielectric properties		
characteristics (8.3.3)	All clicuit-breakers	Mechanical operation and operational performance capability		
		Overload performance (where applicable)		
		Verification of dielectric withstand		
		Verification of temperature-rise		
		Verification of overload releases		
		Verification of main contact position (where applicable)		
II Rated service short-circuit		Rated service short-circuit breaking capacity		
breaking capacity	All circuit-breakers ²⁾	Verification of dielectric withstand		
(8.3.4)		Verification of temperature-rise		
		Verification of overload releases		
		Operational performance capability		
III	All circuit-breakers 3) of utilization	Verification of overload releases		
Rated ultimate short-circuit breaking capacity	category A and circuit-breakers of utilization category B with	Rated ultimate short-circuit breaking capacity		
(8.3.5)	instantaneous override*	Verification of dielectric withstand		
		Verification of overload releases		
IV		Verification of overload releases		
Rated short-time withstand current	Circuit-breakers of utilization	Rated short-time withstand current		
(8.3.6)	category B ²⁾	Verification of temperature-rise		
		Short-circuit breaking capacity at maximum short-time withstand current		
		Verification of dielectric withstand		
		Verification of overload releases		
V Performance of integrally fused		Short-circuit at the selectivity limit current		
circuit-breakers	Stage 1	Verification of temperature-rise		
(8.3.7)]	Verification of dielectric withstand		
		Verification of overload releases		
	Integrally fused circuit-breakers,			
		Short-circuit at take-over current		
		Short-circuit at rated ultimate short-		
	Stage 2	circuit braking capacity		
		Verification of dielectric withstand		
		Verification of overload releases		
	Circuit-breakers of utilization	Verification of overload releases		
	category B:	Rated short-time withstand current		
A	when $I_{cw} = I_{cs}$ (replaces test sequences II and IV)	Rated service short-circuit breaking capacity		
Combined test sequence (8.3.8)	when $I_{CW} = I_{CS} = I_{CU}$	Verification of dielectric withstand		
(0.0.0)	(replaces test sequences II, III	Verification of temperature-rise		
	and IV)	Verification of overload releases		
Individual polo abort siravit toot		Operational performance capability		
Individual pole short-circuit test sequence	Circuit-breakers for use on phase- earthed systems	Individual pole short-circuit breaking capacity (I_{su})		
(annex C)		Verification of dielectric withstand		
		Verification of overload releases		
Individual pole short-circuit test	Circuit-breakers for use in IT	Individual pole short-circuit breaking		
sequence	systems	capacity (I _{IT})		
(annex H)		Verification of dielectric withstand		
(annox 11)				

See note to 8.3.5

¹⁾ For the selection of circuit-breakers for tests and the applicability of the various test sequences according to the relationship between $I_{\rm CS}$, $I_{\rm CU}$ and $I_{\rm CW}$, see table 9a. ²⁾ Except where the combined test sequence is applied.

³⁾

Except - where $I_{CS} = I_{CU}$ (but see 8.3.5) - where the combined test sequence is applied

⁻ for integrally fused circuit-breakers.

Tableau 9a – Séquences d'essais applicables en fonction de la relation entre $I_{\rm cs},\,I_{\rm cu}$ et $I_{\rm cw}$ 1)

	Séquence d'essais		Catégorie d'emploi			
Relation entre I _{cs} , I _{cu} et I _{cw}		Α	A	В	В	
			à fusibles incorporés		à fusibles incorporés	
CAS 1	ı	Х	х	х	Х	
	II	Х	х	Х	Х	
I _{cs} ≠ I _{cu} pour catégorie d'emploi A	III	Х		χ 2)		
$I_{cs} \neq I_{cu} \neq I_{cw}$ pour catégorie	IV	X 4)		Х	Х	
d'emploi B	V		х		Х	
CAS 2	ı			х	х	
	П			Х	Х	
$I_{cs} = I_{cw} \neq I_{cu}$ pour catégorie	III			χ 2)		
d'emploi B	IV			Х	Х	
	V				х	
	Combinée			X 3)	X 3)	
CAS 3	ı	Х	х	Х	Х	
	П	Х	х	Х	Х	
I _{cs} = I _{cu} pour catégorie d'emploi A	III					
I _{cs} = I _{cu} ≠ I _{cw} pour catégorie	IV	X 4)		Х	х	
d'emploi B	V		х		Х	
CAS 4	ı			Х		
	П			Х		
$I_{cs} = I_{cu} = I_{cw}$ pour catégorie	III					
d'emploi B	IV			Х		
	V					
	Combinée			X 3)		

¹⁾ Tableau applicable à chacune des valeurs de $U_{\rm e}$. Dans le cas de valeurs multiples de $U_{\rm e}$, le tableau s'applique à chaque valeur de $U_{\rm e}$. La séquence d'essais applicable est indiquée par X dans la case correspondante.

8.3.2 Conditions générales pour les essais

NOTE 1 Les conditions pour les essais pour la vérification des surtensions de manoeuvre sont à l'étude.

NOTE 2 Les essais selon les prescriptions de cette norme n'excluent pas la nécessité d'effectuer des essais supplémentaires concernant les disjoncteurs incorporés dans des ensembles, par exemple des essais selon la CEI 60439.

8.3.2.1 Prescriptions générales

Sauf accord contraire du constructeur, chaque séquence d'essais doit être effectuée sur un échantillon de disjoncteurs (ou un jeu d'échantillons) à l'état neuf et propre.

²⁾ Essai seulement applicable si $I_{cu} > I_{cw}$.

³⁾ A la discrétion du constructeur ou avec son accord, cette séquence d'essai, peut être appliquée aux disjoncteurs de la catégorie d'emploi B et dans ce cas elle remplace les séquences d'essai II et IV.

⁴⁾ La séquence d'essai IV s'applique seulement dans le cas de disjoncteurs couverts par la note 3 du tableau 4.

Table 9a – Applicability of test sequences according to the relationship between $I_{\rm cs},\,I_{\rm cu}$ and $I_{\rm cw}$

	Test sequence	Utilization category			
$I_{ m cs},I_{ m cu}$ and $I_{ m cw}$ relationship		Α	A	В	B Integrally fused
			Integrally fused		
CASE 1	I	Х	Х	Х	Х
	II	Х	x	Х	Х
$I_{cs} \neq I_{cu}$ for utilization category A	III	Х		X 2)	
$I_{\rm CS} \neq I_{\rm CU} \neq I_{\rm CW}$ for utilization	IV	X ⁴⁾		Х	х
category B	V		Х		Х
			1		T
CASE 2	ı			Х	X
	II			Х	X
$I_{\text{CS}} = I_{\text{CW}} \neq I_{\text{CU}}$ for utilization	III			χ 2)	
category B	IV			Х	х
	V				х
	Combined			X 3)	X 3)
CASE 3	ı	Х	х	х	х
	II	Х	х	Х	Х
$I_{cs} = I_{cu}$ for utilization category A	III				
$I_{CS} = I_{CU} \neq I_{CW}$ for utilization	IV	x 4)		Х	х
category B	V		Х		х
CASE 4	ı			X	
	II			Х	
$I_{CS} = I_{CU} = I_{CW}$ for utilization	III				
category B	IV			Х	
	V				
	Combined			X 3)	

¹⁾ Table applies to any one value of $U_{\rm e}$. For multiple $U_{\rm e}$ ratings, the table applies to each $U_{\rm e}$ rating. The applicability of a test sequence is indicated by X in the relevant space.

8.3.2 General test conditions

NOTE 1 Test conditions for the verification of switching overvoltages are under consideration.

NOTE 2 Tests according to the requirements of this standard do not preclude the need for additional tests concerning circuit-breakers incorporated in assemblies, for example tests in accordance with IEC 60439.

8.3.2.1 General requirements

Unless otherwise agreed by the manufacturer, each test sequence shall be made on a sample circuit-breaker (or set of samples) in a clean and new condition.

²⁾ Test applicable only if $I_{cu} > I_{cw}$.

³⁾ At the discretion of, or in agreement with the manufacturer, this sequence may be applied to circuit-breakers of utilization category B, in which case it replaces test sequences II and IV.

⁴⁾ Test sequence IV applies only in the case of circuit-breakers covered by note 3 of table 4.

- 70 - 60947-2 © CEI:1995+A1:1997 +A2:2001

Le nombre d'échantillons à essayer pour chaque séquence d'essais et les conditions d'essai (par exemple: réglage des déclencheurs de surcharge, raccordement des bornes) suivant les paramètres du disjoncteur, sont indiqués au tableau 10.

Lorsque cela est nécessaire, des informations complémentaires sont données aux paragraphes correspondants.

Sauf prescription contraire, les essais doivent être effectués sur un disjoncteur ayant le courant maximal assigné pour une taille donnée et sont considérés comme couvrant tous les courants assignés de cette taille.

Dans le cas d'une ou de plusieurs différences constructives (voir 2.1.2 et 7.1.5) dans la taille considérée, des échantillons supplémentaires doivent être essayés selon la note 8 du tableau 10.

Sauf prescription contraire, les déclencheurs de court-circuit doivent être réglés au maximum (temps et courant) pour tous les essais.

Les disjoncteurs à essayer doivent être conformes dans tous leurs détails essentiels aux dessins du type qu'ils représentent.

Sauf indication contraire, les essais doivent être effectués avec un courant de même nature, et, dans le cas du courant alternatif, de même fréquence assignée et avec le même nombre de phases que pour le service auquel le disjoncteur est destiné.

Si le mécanisme est à commande électrique, il doit être alimenté sous la tension minimale spécifiée au 7.2.1.1.3. En outre, les mécanismes à commande électrique doivent être alimentés par les circuits de commande appropriés du disjoncteur complet, avec leurs appareils de connexion. Il faut vérifier que le disjoncteur fonctionne correctement à vide lorsqu'il est manoeuvré dans les conditions ci-dessus.

Le disjoncteur à essayer doit être monté complet sur son propre support ou un support équivalent.

Le disjoncteur doit être essayé à l'air libre.

Lorsqu'un disjoncteur peut être utilisé dans des enveloppes individuelles spécifiées et qu'il a été essayé à l'air libre, il doit être en plus essayé dans la plus petite des enveloppes déclarées par le constructeur, en utilisant un nouvel échantillon, selon 8.3.5 à U_{e} max correspondant à l_{cu}, avec les réglages du déclencheur au maximum (voir note 1 du tableau 10).

Les détails concernant ces essais, y compris les dimensions de l'enveloppe doivent être consignés dans le rapport d'essais.

NOTE Une enveloppe individuelle est une enveloppe conçue et dimensionnée pour contenir un seul disjoncteur.

Cependant, si un disjoncteur peut être utilisé dans des enveloppes individuelles spécifiées et est essayé dans la plus petite de ces enveloppes déclarées par le constructeur, il n'y a pas lieu d'effectuer l'essai à l'air libre pourvu qu'une telle enveloppe soit en métal nu, sans isolation. Les détails, y compris les dimensions de l'enveloppe doivent être consignés dans le rapport d'essais.

Pour les essais à l'air libre, pour les essais relatifs au fonctionnement en surcharge (8.3.3.4), au court-circuit (8.3.4.1, 8.3.5.2, 8.3.6.4, 8.3.7.1, 8.3.7.5, 8.3.7.6 et 8.3.8.3), ainsi qu'à la tenue au courant de courte durée admissible (8.3.6.2 et 8.3.8.2) suivant le cas, un grillage métallique doit être placé sur toutes les faces du disjoncteur conformément aux instructions du constructeur. Les détails, y compris les distances du disjoncteur au grillage métallique doivent être consignés dans le rapport d'essais.

The number of samples to be tested for each test sequence and the test conditions (for example setting of overload releases, terminal connections), according to the circuit-breaker parameters, are given in table 10.

Where necessary, additional information is given in the relevant subclauses.

Unless otherwise specified, tests are to be performed on a circuit-breaker having the maximum rated current for a given frame size and are deemed to cover all rated currents of that frame size.

In the case of one or more construction breaks (see 2.1.2 and 7.1.5) within the frame size, further samples shall be tested in accordance with note 8 of table 10.

Unless otherwise stated, short-circuit releases shall be set at maximum (time and current) for all tests.

The circuit-breakers to be tested shall, in all their essential details, correspond to the design of the type which they represent.

Unless otherwise stated, the tests shall be made with the same kind of current and, in the case of a.c., at the same rated frequency and with the same number of phases as in the intended service.

If the mechanism is electrically controlled, it shall be supplied at the minimum voltage as specified in 7.2.1.1.3. In addition, electrically controlled mechanisms shall be energized via the appropriate circuit-breaker control circuits complete with switching devices. It shall be verified that the circuit-breaker operates correctly on no-load when it is operated under the above conditions.

The circuit-breaker under test shall be mounted complete on its own support or an equivalent support.

Circuit-breakers shall be tested in free air.

If a circuit-breaker may be used in specified individual enclosures and has been tested in free air, it shall be additionally tested in the smallest of such enclosures stated by the manufacturer, using a new sample, according to 8.3.5, at $U_{\rm e}$ max/corresponding $I_{\rm cu}$, with release settings at maximum (see note 1 to table 10).

Details of these tests, including the dimensions of the enclosure, shall be stated in the test report.

NOTE An individual enclosure is an enclosure designed and dimensioned to contain one circuit-breaker only.

However, if a circuit-breaker may be used in specified individual enclosures and is tested throughout in the smallest of such enclosures stated by the manufacturer, the tests in free air need not be made provided that such enclosure is bare metallic, without insulation. Details, including the dimensions of the enclosure, shall be stated in the test report.

For the tests in free air, for tests concerning overload performance (8.3.3.4), short-circuit (8.3.4.1, 8.3.5.2, 8.3.6.4, 8.3.7.1, 8.3.7.5, 8.3.7.6 and 8.3.8.3), and short-time withstand current (8.3.6.2 and 8.3.8.2) where applicable, a metallic screen shall be placed on all sides of the circuit-breaker in accordance with the manufacturer's instructions. Details, including distances of the metallic screen from the circuit-breaker, shall be stated in the test report.

Les caractéristiques du grillage métallique sont les suivantes:

 structure: grillage à fils entrelacés, ou métal perforé, ou métal déployé;

- surface des trous par rapport à la surface totale: 0,45-0,65;
- surface de chaque trou: ne dépassant pas 30 mm²;
- revêtement: sans revêtement ou avec revêtement conducteur;
- résistance: doit être comprise dans le calcul du courant présumé de défaut dans le circuit de l'élément fusible (voir 8.3.4.1.2, point d), de la partie 1) et mesurée à partir du point le plus éloigné de l'écran métallique susceptible d'être atteint par les émissions d'arc.

Les couples de serrage à appliquer aux vis des bornes doivent être en conformité avec les instructions du constructeur ou en l'absence de telles instructions, en accord avec le tableau 4 de la partie 1.

L'entretien ou le remplacement de pièces n'est pas autorisé.

Si, pour la commodité de l'essai, il apparaît utile d'augmenter la sévérité d'un essai (par exemple adopter une cadence de manoeuvres plus élevée pour réduire la durée de l'essai), cela ne doit pas être fait sans le consentement du constructeur.

Pour les essais en courant monophasé sur les pôles individuels des disjoncteurs multipolaires pour alimentation d'un circuit où une phase est reliée à la terre, voir l'annexe C.

Pour les essais supplémentaires des disjoncteurs pour les réseaux (IT) non reliés à la terre ou reliés à la terre par une impédance, voir annexe H.

60947-2 © IEC:1995+A1:1997 - 73 - +A2:2001

The characteristics of the metallic screen shall be as follows:

 structure: woven wire mesh, or perforated metal, or expanded metal;

- ratio hole area/total area: 0,45-0,65;
- size of hole: not exceeding 30 mm²;
- finish: bare or conductive plating;
- resistance: shall be included in the calculation for the prospective fault current in the fusible element circuit (see 8.3.4.1.2, item d) of Part 1) when measured from the furthest point on the metallic screen likely to be reached by arc emissions.

The tightening torques to be applied to the terminal screws shall be in accordance with the manufacturer's instructions or, in the absence of such instructions, in accordance with table 4 of Part 1.

Maintenance or replacements of parts is not permitted.

If, for convenience of testing, it appears useful to increase the severity of a test (for example to adopt a higher frequency of operation in order to reduce the duration of the test), this shall not be done without the consent of the manufacturer.

For single-phase tests on individual poles of multipole circuit-breakers intended for use on phase-earthed systems, see annex C.

For additional tests for circuit-breakers for unearthed or impedance earth systems (IT), see annex H.

Tableau 10 – Nombre d'échantillons pour les essais

Séquence d'essais	ca as	ırac tiqu sslg	re de téris- ies nées quées	repo Alim ti	rnes érées nenta- on/ arge	Nombre d'échan- tillons	Echan- tillon n°		rant de lage ¹⁾	Tension d'essai		ırant ssai	Vérifi- cation de l'échauf- fement	Notes
	1	2	Plus	Oul	Non			Min	Max		Corr	Max		
I	Х	Х	Х	Х	Х	1	1		Х	U _e max	Voir	8.3.3	Х	8)
Ш	×			x		,	1		Х	U_{e}	х		х	8)9)
(I_{cs})	Ĺ			^		2	2	х		U _e	х			2)
et							1		Х	U _e	х		x	8)9)
combinée	Х				х	3	2	x		U _e	х			2)
							3		Х	U _e	Х		х	3)
							1		х	U _e max corr		×	x	8)9)
		Х		Х	х	3	2	X		U _e max corr		x		2)
							3		Х	U _e max	Х		Х	4)
							1		Х	U _e max corr		×	x	8)9)
			x	x	×	4	2	X		U _e max corr		x		2)
			^	^	^	+	3		Х	$U_{ m e}$ intermed	х		Х	6)
							4		Х	U _e max	Х		Х	4)
Ш	x			x		2	1		х	U _e	x			8)
(/cu)	Ĺ					2	2	Х		U _e	Х			2)
		•			-		1		х	U _e	х	+		8)
	х				Х	3	2	X		U _e	×			2)
							3		Х	U _e	Х			3)
							1		х	U _e max corr		x		8)
		Х		Х	Х	3	2	х		U _e max corr		х		2)
							3		Х	U _e max	Х			4)
							1		Х	U _e max corr		x		8)
			×	x	x	4	2	X		U _e max corr		х	•	2)
			^	^	^		3		Х	U _e intermed	х			6)
							4		Х	U _e max	Х			4)
IV (I _{CW})						Comme	e pour les	séqu	ences	d'essais III			_	5)
V	x	х	x	x	х	_	1		Х	U _e max	х			7)8)
(I _{cu})	\lfloor ^	_^		_^		2	2	х		U _e max	х			2)
Pôle individuel (annexe C)	×	х	х	x	х	2	1		х	U _e max	I _{su}			8)
(I _{su})							2	x		<i>U</i> e max	/ _{su}			_
Pôle individuel (annexe H) (I _{IT})	х	x	x	х	х	1			х	U _e max	Iт			8)

Table 10 – Number of samples for test

Test sequence		mar	er of ked tings	ma	ninals rked /load	Number of samples	Sample No.		rrent ing ¹⁾	Test voltage	Test c	urrent	Tem- perature- rise verification	Notes
	1	2	Mul	Yes	No			Min	Max		Corr	Max		
I	Х	Х	х	x	х	1	1		х	U _e max	See	8.3.3	Х	8)
Ш							1		Х	U_{e}	Х		Х	8)9)
(I _{cs})	Х			X		2	2	х		U _e	х			2)
and							1		Х	U _e	Х		Х	8)9)
combined	Х				Х	3	2	х		$U_{ m e}$	Х			2)
							3		Х	$ u_{\mathrm{e}}$	х		x	3)
							1		Х	U _e max corr		х	х	8)9)
		х		х	Х	3	2	х		U _e max corr		x		2)
							3		Х	U _e max	Х		x	4)
						-	1		Х	U _e max corr		х	х	8)9)
			V		v		2	х		U _e max corr		x		2)
			Х	X	Х	4	3		Х	$U_{ m e}$ intermed	Х		x	6)
							4		Х	U _e max	Х		х	4)
Ш	V			,		•	1		Х	U _e	Х			8)
(I _{cu})	Х			Х		2	2	Х		U _e	Х			2)
							1		Х	U _e	Х			8)
	х				Х	3	2	х		U _e	Х			2)
							3		Х	U _e	Х			3)
							1		Х	U _e max corr		х		8)
		х		х	Х	3	2	х		U _e max corr		х		2)
							3		Х	U _e max	Х			4)
							1		Х	U _e max corr		х		8)
			х	x	Х	4	2	Х		U _e max corr		х		2)
			^	^	^		3		Х	U _e intermed	Х			6)
							4		Х	U _e max	Х			4)
IV (I _{CW})							As for te	st se	quence	III				5)
V	х	x	Х	×	Х		1		Х	U _e max	Х			7)8)
(I_{cu})	^	^	^	^	^	2	2	Х		U _e max	Х			2)
Individual pole (annex C)	х	x	х	х	x	2	1		х	U _e max	/ _{su}			8)
(I _{su})	<u> </u>		,,			_ <u>-</u>	2	х		U _e max	/ _{su}			_
Individual pole (annex H) (I _{IT})	х	x	х	×	х	1			x	U _e max	/ _{IT}			8)

Notes du tableau 10

Plus = plusieurs; Corr = correspondant; Intermed = Intermédiaire

- 1) Min signifie le minimum de l_n pour une taille donnée; dans le cas de déclencheurs de surcharge réglables, cela signifie le réglage minimal correspondant à l_n minimal. Max signifie le maximum de l_n pour une taille donnée
- 2) Cet échantillon est omis dans le cas d'un disjoncteur ayant un seul courant assigné non réglable pour une taille donnée et dans le cas d'un disjoncteur équipé seulement d'un déclencheur shunt (c'est-à-dire sans déclencheur de surintensité intégré).
- 3) Connexions inversées.
- 4) Connexions inversées si les bornes ne sont pas repérées.
- 5) Concerne les disjoncteurs de catégorie B et également les disjoncteurs de catégorie A lorsqu'ils sont couverts par la note 3 du tableau 4.
- 6) Suivant accord à conclure entre le laboratoire d'essais et le constructeur.
- 7) Si les bornes ne sont pas repérées, un échantillon supplémentaire doit être essayé avec les connexions inversées.
- 8) Dans le cas d'une ou plusieurs différences constructives (voir 2.1.2 et 7.1.5) pour une taille donnée, un autre échantillon est essayé au courant maximal assigné correspondant à chaque construction dans les conditions applicables à l'échantillon 1.
- 9) La prescription de la note 8) est seulement applicable à la séquence combinée.

8.3.2.2 Grandeurs d'essai

8.3.2.2.1 Valeurs des grandeurs d'essai

Le 8.3.2.2.1 de la première partie est applicable.

8.3.2.2.2 Tolérances sur les grandeurs d'essai

Le 8.3.2.2.2 de la première partie est applicable.

8.3.2.2.3 Fréquence du circuit d'essai en courant alternatif

Tous les essais doivent être effectués à la fréquence assignée du disjoncteur. Pour tous les essais de court-circuit, si le pouvoir de coupure assigné dépend essentiellement de la valeur de la fréquence, la tolérance ne doit pas dépasser ±5 %.

Si le constructeur indique que le pouvoir de coupure assigné est notablement indépendant de la valeur de la fréquence, la tolérance ne doit pas dépasser ±25 %.

8.3.2.2.4 Facteur de puissance du circuit d'essai

Le 8.3.4.1.3 de la première partie est applicable avec la modification suivante:

Le tableau 16 de la première partie est remplacé par le tableau 11 de la présente norme.

Notes for table 10

Mul = multiple; Corr = corresponding; Intermed = intermediate

- 1) Min means the minimum l_n of a given frame size; in the case of adjustable overload releases, it means the minimum setting of the minimum l_n . Max means the maximum l_n of a given frame size.
- This sample is omitted in the case of a circuit-breaker having a single non-adjustable current rating for a given frame size and in the case of a circuit-breaker provided only with a shunt release (i.e. without an integral over-current release).
- 3) Connections reversed.
- 4) Connections reversed, if terminals unmarked.
- 5) Applies to category B circuit-breakers and also to category A circuit-breakers covered by note 3 of table 4.
- 6) To be agreed between test station and manufacturer.
- 7) If terminals unmarked an additional sample shall be tested with connections reversed.
- ⁸⁾ In the case of one or more construction breaks (see 2.1.2 and 7.1.5) within the frame size a further sample is tested at the maximum rated current corresponding to each construction, under the conditions applicable to sample 1.
- 9) The requirement of note 8) applies only to the combined sequence.

8.3.2.2 Test quantities

8.3.2.2.1 Values of test quantities

Subclause 8.3.2.2.1 of Part 1 applies.

8.3.2.2.2 Tolerances on test quantities

Subclause 8.3.2.2.2 of Part 1 applies.

8.3.2.2.3 Frequency of the test circuit for a.c.

All tests shall be made at the rated frequency of the circuit-breaker. For all short-circuit tests, if the rated breaking capacity is essentially dependent on the value of the frequency, the tolerance shall not exceed ±5 %.

If the manufacturer declares the rated breaking capacity to be substantially unaffected by the value of the frequency, the tolerance shall not exceed ±25 %.

8.3.2.2.4 Power factor of the test circuit

Subclause 8.3.4.1.3 of Part 1 applies with the following modification:

Table 16 of Part 1 is replaced by table 11 of this standard.

Tableau 11 – Valeurs des facteurs de puissance et des constantes de temps en fonction des courants d'essai

Courant d'essai /		acteur de puissand	Constante de temp			s	
kA	Court- circuit	Aptitude au fonctionnement en service	Surcharge	Court- circuit	Aptitude au fonctionnement en service	Surcharge	
1 ≤ 3	0,9			5			
$3 < 1 \le 4,5$	0,8			5			
$4.5 < I \le 6$	0,7	}	•	5			
6 < <i>l</i> ≤ 10	0,5	0,8	0,5	5	2	2,5	
10 < <i>l</i> ≤ 20	0,3			10			
20 < <i>l</i> ≤ 50	0,25			15			
50 < /	0,2			15			

8.3.2.2.5 Constante de temps du circuit d'essai

Le 8.3.4.1.4 de la première partie est applicable avec la modification suivante:

Le tableau 16 de la première partie est remplacé par le tableau 11 de la présente norme.

8.3.2.2.6 Tension de rétablissement à fréquence industrielle

Le point a) du 8.3.2.2.3 de la première partie est applicable.

8.3.2.3 Interprétation des résultats d'essais

L'état du disjoncteur après les essais doit être contrôlé par les vérifications spécifiées pour chaque séquence.

Un disjoncteur est réputé avoir satisfait aux prescriptions de la présente norme s'il répond aux prescriptions de chaque séquence à laquelle il est soumis.

Le boîtier ne doit pas présenter de cassure, mais l'on peut accepter des fêlures superficielles.

NOTE Les fissures fines sont la conséquence de pression élevée du gaz ou de contraintes thermiques dues aux arcs lors de l'interruption de courants de défaut élevés et sont de nature superficielle. En conséquence, elles ne se propagent pas dans toute l'épaisseur de l'enveloppe moulée du dispositif.

8.3.2.4 Comptes rendus d'essais

Le 8.3.2.4 de la première partie est applicable.

8.3.2.5 Conditions d'essai pour les essais d'échauffement

Le disjoncteur doit répondre aux dispositions de 7.2.2.

Le 8.3.3.3 de la première partie est applicable, à l'exception de 8.3.3.3.6, avec le complément suivant:

Le disjoncteur doit être monté conformément au 8.3.2.1.

Les bobines des déclencheurs à minimum de tension doivent être (s'il convient) alimentées à leur tension assignée maximale de commande.

Pour les disjoncteurs tétrapolaires, un essai doit d'abord être effectué sur les trois pôles munis de déclencheurs à maximum de courant. Un essai complémentaire doit être effectué sur les disjoncteurs de courant assigné ne dépassant pas 63 A en faisant passer le courant d'essai par le quatrième pôle et le pôle adjacent. Pour les valeurs supérieures de courant assigné, la méthode d'essai doit faire l'objet d'un accord séparé entre le constructeur et l'utilisateur.

Table 11 – Values of power factors and time constants corresponding to test currents

Test current /		Power factor		Time constant ms		
kA	Short-circuit	Operational performance capability	Overload	Short-circuit	Operational performance capability	Overload
1 ≤ 3	0,9			5		
3 < 1 \le 4,5	0,8			5		
4,5 < 1 ≤ 6	0,7			5		
6 < <i>l</i> ≤ 10	0,5	0,8	0,5	5	2	2,5
10 < <i>l</i> ≤ 20	0,3			10		
20 < 1 ≤ 50	0,25			15		
50 < 1	0,2			15		

8.3.2.2.5 Time constant of the test circuit

Subclause 8.3.4.1.4 of Part 1 applies with the following modification:

Table 16 of Part 1 is replaced by table 11 of this standard.

8.3.2.2.6 Power-frequency recovery voltage

Subclause 8.3.2.2.3, item a) of Part 1 applies.

8.3.2.3 Evaluation of test results

The condition of the circuit-breaker after tests shall be checked by the verifications applicable to each sequence.

A circuit-breaker is deemed to have met the requirements of this standard if it meets the requirements of each sequence as applicable.

The case shall not be broken but hairline cracks are acceptable.

NOTE Hairline cracks are a consequence of high gas pressure or thermal stresses due to arcing when interrupting very high fault currents and are of a superficial nature. Consequently, they do not develop through the entire thickness of the moulded case of the device.

8.3.2.4 Test reports

Subclause 8.3.2.4 of Part 1 applies.

8.3.2.5 Test conditions for temperature-rise test

The circuit-breaker shall meet the requirements of 7.2.2.

Subclause 8.3.3.3 of Part 1 applies, except 8.3.3.3.6, with the following addition:

The circuit-breaker shall be mounted in accordance with 8.3.2.1.

Coils of undervoltage releases (if applicable) shall be energized at the maximum rated control supply voltage.

For four-pole circuit-breakers, a test shall first be made on the three poles which incorporate over-current releases. For a circuit-breaker having a value of rated current not exceeding 63 A, an additional test shall be made by passing the test current through the fourth pole and its adjacent pole. For higher rated current values, the method of testing shall be the subject of a separate agreement between manufacturer and user.

8.3.2.6 Conditions d'essai pour les essais de court-circuit

8.3.2.6.1 Prescriptions générales

NOTE 1 L'attention est attirée sur la note 3 qui a été introduite afin d'éviter de refaire des essais inutiles par suite des nouvelles prescriptions du point b).

Le 8.3.4.1.1 de la première partie est complété comme suit:

- a) Le disjoncteur doit être monté en accord avec 8.3.2.1.
- b) A moins qu'il soit montré que, les moyens de manoeuvre manuelle étant dans n'importe quelle position, il n'y a pas d'ouverture autour des moyens de manoeuvre manuelle par laquelle il est possible d'introduire une corde à piano de 0,26 mm de diamètre jusqu'à la chambre d'arc, les prescriptions d'essais suivantes doivent s'appliquer.

Pour les manoeuvres d'ouverture seulement, une feuille de polyéthylène à basse densité, transparente, d'une épaisseur égale à $0.05~\text{mm} \pm 0.01~\text{mm}$ et de dimension $100~\text{mm} \times 100~\text{mm}$ positionnée comme indiqué sur la figure 1, est fixée et tendue de façon raisonnable sur un cadre et placée à une distance de 10~mm:

- de la position la plus débordante de l'organe de fermeture manuelle d'un disjoncteur dont l'organe de fermeture ne se trouve pas dans un renfoncement;
- ou du bord du renfoncement pour un disjoncteur dont l'organe de fermeture se trouve dans un renfoncement.

La feuille de polyéthylène doit avoir les caractéristiques suivantes:

- densité à 23 °C: 0,92 g/cm $^3 \pm 0,05$ g/cm 3 ;

point de fusion:
 110 °C à 120 °C.

Sur le côté opposé au disjoncteur, il doit y avoir un renfort convenable afin d'éviter une déchirure de la feuille de polyéthylène, due à l'onde de pression qui peut survenir pendant l'essai de court-circuit (voir figure 1).

Pour les essais autres que ceux dans une enveloppe individuelle, un écran, qui peut être en matériau isolant ou en métal, est placé entre le grillage métallique et la feuille de polyéthylène (voir figure 1).

NOTE 2 Le dispositif d'essai s'applique aux manoeuvres O seulement étant donné qu'il est difficile de faire les manoeuvres CO et il est accepté que les manoeuvres O ne sont pas moins sévères que les manoeuvres CO. (Voir 8.3.2.6.4).

NOTE 3 Afin d'éviter d'avoir à faire une nouvelle série de séquences d'essai de court-circuit afin de prouver la conformité à ce paragraphe, il est permis de façon provisoire avec l'accord du constructeur, de vérifier cette conformité par une manoeuvre séparée O pour chaque séquence d'essais applicable.

c) Le disjoncteur doit être manoeuvré au cours des essais de manière à reproduire aussi fidèlement que possible les conditions de service.

Un disjoncteur à manoeuvre dépendante par source d'énergie extérieure doit se fermer au cours des essais avec une alimentation de commande (tension ou pression) égale à 85 % de sa valeur assignée.

Un disjoncteur à manoeuvre indépendante par source d'énergie extérieure doit se fermer au cours des essais avec le mécanisme de manoeuvre chargé à la valeur maximale fixée par le constructeur.

Un disjoncteur à manoeuvre par accumulation d'énergie doit se fermer au cours des essais avec le dispositif de manoeuvre alimenté à 85 % de la tension assignée de l'alimentation auxiliaire.

d) Si un disjoncteur est muni de déclencheurs réglables à maximum de courant, le réglage de ces déclencheurs doit être comme spécifié pour chaque séquence d'essais.

Dans le cas des disjoncteurs qui n'ont pas de déclencheurs à maximum de courant, mais qui ont un déclencheur shunt, celui-ci doit être alimenté sous une tension égale à 70 % de la tension assignée d'alimentation de commande de ce déclencheur (voir 7.2.1.2.3), appliquée au plus tôt au début du court-circuit et au plus tard 10 ms après le début de celui-ci.

8.3.2.6 Test conditions for short-circuit tests

8.3.2.6.1 General requirements

NOTE 1 Attention is drawn to note 3, which has been introduced to avoid unnecessary retesting due to the new requirement of item b).

Subclause 8.3.4.1.1 of Part 1 is amplified as follows:

- a) The circuit-breaker shall be mounted in accordance with 8.3.2.1.
- b) Unless it can be shown that, with the manual operating means in any position, there is no opening around the manual operating means through which a music wire of 0,26 mm diameter can be inserted so as to reach the arc chamber area, the following test arrangement shall apply:

For opening operations only, a clear, low density polyethylene sheet, 0,05 mm \pm 0,01 mm thick, of a size 100 mm \times 100 mm, positioned as shown in figure 1, fixed and reasonably stretched in a frame, is placed at a distance of 10 mm from

- either the maximum projection of the manual closing means of a circuit-breaker without recess for this closing means;
- or the rim of the recess for the manual closing means of a circuit-breaker with recess for this closing means.

The polyethylene sheet shall have the following physical properties:

density at 23 °C: 0,92 g/cm³ \pm 0,05 g/cm³;

110 °C to 120 °C. melting point:

On the side remote from the circuit-breaker there shall be an appropriate backing to obviate tearing of the polyethylene sheet due to the pressure wave which may occur during the short-circuit test (see figure 1).

For tests other than those in an individual enclosure, a shield which may be of insulating material or of metal is placed between the metallic screen and the polyethylene sheet (see figure 1).

NOTE 2 This test arrangement applies to O operations only, since it is difficult to arrange for CO operations and it is accepted that O operations are no less severe than CO operations (see 8.3.2.6.4).

NOTE 3 In order to obviate the need for making a new series of short-circuit test sequences to prove compliance with this subclause, it is permitted provisionally, with the agreement of the manufacturer, to verify this by means of a separate O operation for each test sequence applicable.

c) The circuit-breaker shall be operated during tests to simulate service conditions as closely as possible.

A circuit-breaker having a dependent power operation shall be closed during tests with the control supply (voltage or pressure) at 85 % of its rated value.

A circuit-breaker having an independent power operation shall be closed during tests with the operating mechanism charged to its maximum value stated by the manufacturer.

A circuit-breaker having a stored energy operation shall be closed during tests with the operating means charged at 85 % of the rated voltage of the auxiliary supply.

d) If a circuit-breaker is fitted with adjustable over-current releases, the setting of these releases shall be as specified for each test sequence.

For circuit-breakers without over-current releases but fitted with a shunt release, this release shall be energized by the application of a voltage equal to 70 % of the rated control supply voltage of the release (see 7.2.1.2.3), at a time not earlier than that of the initiation of the short-circuit nor later than 10 ms after the initiation of the short-circuit.

- 82 - 60947-2 © CEI:1995+A1:1997 +A2:2001

e) Pour tous ces essais, le côté source du circuit d'essai doit être raccordé aux bornes correspondantes du disjoncteur telles qu'elles ont été repérées par le constructeur. En l'absence de tels repères, les connexions d'essai doivent être comme spécifiées au tableau 10.

8.3.2.6.2 Circuit d'essai

Le 8.3.4.1.2 de la première partie est applicable.

8.3.2.6.3 Etalonnage du circuit d'essai

Le 8.3.4.1.5 de la première partie est applicable.

8.3.2.6.4 Procédure d'essai

Le 8.3.4.1.6 de la première partie est applicable avec les développements suivants:

Après étalonnage du circuit d'essai, conformément au 8.3.2.6.3, les connexions provisoires sont remplacées par le disjoncteur en essai et ses câbles de raccordement, s'il y a lieu.

Les essais de vérification du fonctionnement en condition de court-circuit doivent être effectués conformément aux séquences du tableau 9 (voir 8.3.1).

Pour les disjoncteurs dont le courant assigné ne dépasse pas 630 A, on doit insérer comme suit un câble de 75 cm de longueur, et de section correspondant au courant thermique conventionnel (voir 8.3.3.3.4, tableaux 9 et 10 de la première partie):

- 50 cm côté amont;
- 25 cm côté aval.

La séquence de manoeuvres doit être celle applicable à chaque séquence d'essais, comme spécifié aux 8.3.4.1, 8.3.5.2, 8.3.6.4 et 8.3.7.6.

Dans le cas des disjoncteurs tétrapolaires, il faut effectuer une séquence de manoeuvres supplémentaire sur un ou plusieurs échantillons nouveaux, conformément au tableau 10, sur le quatrième pôle et le pôle adjacent, pour les séquences III et IV, ou IV et V, suivant le cas, sous une tension appliquée de $U_{\rm e}/\sqrt{3}$, en utilisant le circuit de la figure 12 de la première partie; le courant d'essai doit faire l'objet d'un accord entre le constructeur et l'utilisateur, mais ne doit pas être inférieur à 60 % de I_{cu} , ou de I_{cw} suivant le cas.

A la demande du constructeur, ces essais supplémentaires peuvent être effectués sur les mêmes échantillons, chaque essai comprenant, dans la séguence d'essais correspondante, les essais appropriés:

- des 3 pôles adjacents de phase;
- du 4e pôle et du pôle adjacent.

Les symboles suivants sont utilisés pour définir la séquence de manoeuvres:

- représente une manoeuvre de coupure;
- CO représente une manoeuvre d'établissement, suivie d'une manoeuvre de coupure, après la durée d'ouverture appropriée:
- représente l'intervalle de temps entre deux manoeuvres en court-circuit, qui doit être le plus long des deux suivants: 3 min ou la durée de réarmement du disjoncteur. La valeur réelle de t doit être spécifiée dans le rapport d'essais.

– 83 **–**

e) For all these tests, the line side of the test circuit shall be connected to the corresponding terminals of the circuit-breaker as marked by the manufacturer. In the absence of such markings, the test connections shall be as specified in table 10.

8.3.2.6.2 Test circuit

Subclause 8.3.4.1.2 of Part 1 applies.

8.3.2.6.3 Calibration of the test circuit

Subclause 8.3.4.1.5 of Part 1 applies.

8.3.2.6.4 Test procedure

Subclause 8.3.4.1.6 of Part 1 applies with the following amplification:

After calibration of the test circuit in accordance with 8.3.2.6.3, the temporary connections are replaced by the circuit-breaker under test and its connecting cables, if any.

Tests for the performance under short-circuit conditions shall be made according to the sequences in table 9 (see 8.3.1).

For circuit-breakers having a rated current up to and including 630 A, a cable 75 cm in length, having a cross-section corresponding to the conventional thermal current (see 8.3.3.3.4, tables 9 and 10 of Part 1) shall be included as follows:

- 50 cm on the supply side,
- 25 cm on the load side.

The sequence of operations shall be that which is applicable to each test sequence, as specified in 8.3.4.1, 8.3.5.2, 8.3.6.4 and 8.3.7.6.

For four-pole circuit-breakers, an additional sequence of operations on one or more new samples, in accordance with table 10, shall be made on the fourth pole and its adjacent pole, for sequences III and IV, or IV and V, as applicable, at an applied voltage of $U_{\rm e}/\sqrt{3}$, using the circuit shown in figure 12 of Part 1. The test current shall be agreed between manufacturer and user, but shall be not less than 60 % of $I_{\rm cu}$ or $I_{\rm cw}$, as applicable.

At the manufacturer's request, these additional tests may be made on the same samples, each test in the relevant test sequence comprising the appropriate tests:

- on three adjacent phase poles;
- on the fourth pole and the adjacent pole.

The following symbols are used for defining the sequence of operations:

- O represents a breaking operation;
- CO represents a making operation followed, after the appropriate opening time, by a breaking operation:
- t represents the time interval between two successive short-circuit operations, which shall be 3 min or the resetting time of the circuit-breaker, whichever is the longer. The actual value of t shall be stated in the test report.

La valeur maximale de I^2t (voir 2.5.1.8 de la première partie) notée durant ces essais peut être mentionnée dans le compte rendu d'essais (voir 7.2.1.2.4, point a).

NOTE La valeur maximale de l^2t enregistrée durant les essais peut ne pas être la valeur maximale possible pour les conditions prescrites. Des essais supplémentaires sont nécessaires s'il faut déterminer cette valeur maximale.

8.3.2.6.5 Comportement du disjoncteur pendant les essais de fermeture et de coupure en court-circuit

Le 8.3.4.1.7 de la première partie est applicable.

8.3.2.6.6 Interprétation des enregistrements

Le 8.3.4.1.8 de la première partie est applicable.

8.3.2.6.7 Vérification après les essais de court-circuit

a) Après les manoeuvres d'ouverture des essais de pouvoir de coupure et de fermeture en court-circuit des 8.3.4.1, 8.3.5.2, 8.3.6.4, 8.3.7.1, 8.3.7.6 et 8.3.8.3, s'il y a lieu, la feuille de polyéthylène ne doit pas montrer de trous visibles à l'oeil nu sans grossissement supplémentaire.

NOTE Les trous minuscules visibles dont le diamètre est inférieur à 0,26 mm peuvent être ignorés.

b) Après les essais de court-circuit, le disjoncteur doit satisfaire aux vérifications spécifiées pour chaque séquence d'essais s'il y a lieu.

8.3.3 Séquence d'essais I: Caractéristiques générales de fonctionnement

Cette séquence d'essais s'applique à tous les disjoncteurs et comprend les essais suivants:

Essai	Paragraphe
Limites et caractéristiques de déclenchement	8.3.3.1
Propriétés diélectriques	8.3.3.2
Fonctionnement mécanique et aptitude au fonctionnement en service	8.3.3.3
Fonctionnement en surcharge (s'il y a lieu)	8.3.3.4
Vérification de la tenue diélectrique	8.3.3.5
Vérification de l'échauffement	8.3.3.6
Vérification des déclencheurs de surcharge	8.3.3.7
Vérification des déclencheurs à minimum de tension et des déclencheurs shunt (le cas échéant)	8.3.3.8
Vérification de la position des contacts principaux pour disjoncteurs aptes au sectionnement	8.3.3.9

Un seul échantillon doit être essayé; le réglage des déclencheurs réglables doit être conforme au tableau 10.

8.3.3.1 Essai des limites et des caractéristiques de déclenchement

Le 8.3.3.2 de la première partie est développé comme suit:

8.3.3.1.1 Généralités

La température de l'air ambiant doit être mesurée comme lors des essais d'échauffement (voir 8.3.2.5).

Quand le déclencheur d'ouverture à maximum de courant est normalement monté comme partie intégrante du disjoncteur, il doit être vérifié dans le disjoncteur correspondant.

The maximum value of I^2t (see 2.5.18 of Part 1) during these tests may be recorded in the test report (see 7.2.1.2.4, item a).

NOTE The maximum value of t^2t recorded during the tests may not be the maximum possible value for the prescribed conditions. Additional tests are necessary if this maximum value needs to be determined.

8.3.2.6.5 Behaviour of the circuit-breaker during short-circuit making and breaking tests

Subclause 8.3.4.1.7 of Part 1 applies.

8.3.2.6.6 Interpretation of records

Subclause 8.3.4.1.8 of Part 1 applies.

8.3.2.6.7 Verification after short-circuit tests

a) After the opening operations of the short-circuit making and breaking capacity tests of 8.3.4.1, 8.3.5.2, 8.3.6.4, 8.3.7.1, 8.3.7.6, 8.3.8.3, as applicable, the polyethylene sheet shall show no holes visible with normal or corrected vision without additional magnification.

NOTE Minute visible holes of less than 0,26 mm diameter can be ignored.

b) After the short-circuit tests, the circuit-breaker shall comply with the verifications specified for each test sequence, as applicable.

8.3.3 Test sequence I: General performance characteristics

This test sequence applies to all circuit-breakers and comprises the following tests:

Test	Subclause
Tripping limits and characteristics	8.3.3.1
Dielectric properties	8.3.3.2
Mechanical operation and operational performance capability	8.3.3.3
Overload performance (where applicable)	8.3.3.4
Verification of dielectric withstand	8.3.3.5
Verification of temperature-rise	8.3.3.6
Verification of overload releases	8.3.3.7
Verification of undervoltage and shunt releases (if applicable)	8.3.3.8
Verification of main contact position (for circuit- breakers suitable for isolation)	8.3.3.9

One sample shall be tested; the setting of adjustable releases shall be in accordance with table 10.

8.3.3.1 Test of tripping limits and characteristics

Subclause 8.3.3.2 of Part 1 is amplified as follows:

8.3.3.1.1 General

The ambient air temperature shall be measured as for the temperature-rise tests (see 8.3.2.5).

When the over-current opening release is normally a built-in part of the circuit-breaker, it shall be verified inside the corresponding circuit-breaker.

Tout déclencheur séparé doit être monté approximativement comme dans les conditions normales de service. Le disjoncteur complet doit être monté conformément au 8.3.2.1. Le matériel à l'essai doit être protégé contre des échauffements ou des refroidissements anormaux dus à des causes extérieures.

Les connexions du déclencheur séparé, s'il y a lieu, ou du disjoncteur complet doivent être réalisées de la même façon que pour le service normal avec des conducteurs de section correspondant au courant assigné (I_n) (voir 8.3.3.3.4, tableaux 9 et 10 de la première partie), et de longueur conforme au 8.3.3.3.4 de la première partie.

NOTE Les essais pour lesquels la caractéristique de déclenchement est indépendante de la température des bornes (par exemple les déclencheurs électroniques de surcharge, les déclencheurs magnétiques), les données relatives au raccordement (type, section, longueur) peuvent être différentes de celles requises en 8.3.3.3.4 de la CEI 60947-1. Il est recommandé que les raccordements soient compatibles avec le courant d'essai et les contraintes thermiques induites.

Pour les disjoncteurs munis de déclencheurs réglables à maximum de courant, les essais doivent être effectués aux courants de réglage minimal et maximal avec des conducteurs correspondant au courant assigné (I_n) (voir 4.7.2).

Pour les disjoncteurs ayant un pôle de neutre équipé d'un relais de surcharge, la vérification de ce relais de surcharge doit être faite sur le pôle de neutre seul.

Les essais peuvent être effectués à toute tension convenable.

8.3.3.1.2 Ouverture dans des conditions de court-circuit

Le fonctionnement des déclencheurs de court-circuit (voir 4.7.1) doit être vérifié à 80 % et à 120 % du courant de réglage de court-circuit du déclencheur. Le courant d'essai ne doit pas présenter d'asymétrie.

Pour une valeur du courant d'essai égale à 80 % du courant de réglage de court-circuit, le déclencheur ne doit pas fonctionner, le courant étant maintenu:

- pendant 0,2 s dans le cas de déclencheurs instantanés;
- pendant un temps égal à deux fois le retard fixé par le constructeur dans le cas de déclencheurs à retard indépendant.

Pour une valeur de courant d'essai égale à 120 % du réglage du courant de court-circuit, le déclencheur doit fonctionner:

- en 0,2 s dans le cas de déclencheurs instantanés,
- dans un délai égal à deux fois le retard fixé par le constructeur dans le cas de déclencheurs à retard indépendant.

Le fonctionnement des déclencheurs multipolaires de court-circuit doit être vérifié en alimentant deux pôles en série par le courant d'essai, en utilisant toutes les combinaisons possibles de pôles ayant un déclencheur de court-circuit.

En plus, le fonctionnement des déclencheurs de court-circuit doit être vérifié sur chaque pôle de phase individuellement, à la valeur du courant de déclenchement déclarée par le constructeur pour un pôle unique, valeur à laquelle ils doivent fonctionner:

- en 0,2 s dans le cas des déclencheurs instantanés;
- dans un délai égal à deux fois le retard déclaré par le constructeur dans le cas de déclencheurs à retard indépendant.

Les déclencheurs à retard indépendant doivent, en outre, satisfaire aux prescriptions de 8.3.3.1.4.

Any separate release shall be mounted approximately as under normal service conditions. The complete circuit-breaker shall be mounted in accordance with 8.3.2.1. The equipment under test shall be protected against undue external heating or cooling.

The connections of the separate release, if appropriate, or of the complete circuit-breaker shall be made as for normal service, with conductors of cross-section corresponding to the rated current (I_n) (see tables 9 and 10 of 8.3.3.3.4 of Part 1) and of length according to 8.3.3.3.4 of Part 1.

NOTE For tests for which the tripping characteristic is independent of the temperature of the terminals (e.g. electronic overload releases, magnetic releases), connection data (type, cross-section, length) may be different from those required in 8.3.3.3.4 of IEC 60947-1. The connections should be compatible with the test current and induced thermal stresses.

For circuit-breakers with adjustable over-current releases, the tests shall be made at the minimum and maximum current settings, with conductors corresponding to the rated current I_n (see 4.7.2).

For circuit-breakers having a neutral pole provided with an overload release, the verification of this overload release shall be made on the neutral pole alone.

The tests may be made at any convenient voltage.

8.3.3.1.2 Opening under short-circuit conditions

The operation of short-circuit releases (see 4.7.1) shall be verified at 80 % and 120 % of the short-circuit current setting of the release. The test current shall have no asymmetry.

At a test current having a value equal to 80 % of the short-circuit current setting, the release shall not operate, the current being maintained

- for 0,2 s in the case of instantaneous releases;
- for an interval of time equal to twice the time-delay stated by the manufacturer, in the case of definite time-delay releases.

At a test current having a value equal to 120 % of the short-circuit current setting, the release shall operate

- within 0,2 s in the case of instantaneous releases;
- within an interval of time equal to twice the time-delay stated by the manufacturer, in the case of definite time-delay releases.

The operation of multipole short-circuit releases shall be verified by loading two poles in series with the test current, using all possible combinations of poles having a short-circuit release.

In addition, the operation of short-circuit releases shall be verified on each phase pole individually, at the value of the tripping current declared by the manufacturer for a single pole, at which value they shall operate:

- within 0,2 s in the case of instantaneous releases;
- within an interval of time equal to twice the time delay stated by the manufacturer, in the case of definite time delay releases.

Definite time-delay releases shall, in addition, comply with the requirements of 8.3.3.1.4.

8.3.3.1.3 Ouverture dans des conditions de surcharge

a) Déclencheurs instantanés ou à retard indépendant

Le fonctionnement des déclencheurs de surcharge instantanés ou à retard indépendant (voir note 1 de 4.7.1) doit être vérifié à 90 % et à 110 % du courant de réglage de surcharge du déclencheur. Le courant d'essai ne doit pas présenter d'asymétrie. Le fonctionnement des déclencheurs de surcharge multipolaires doit être vérifié avec tous les pôles de phase alimentés simultanément par le courant d'essai.

Les déclencheurs à retard indépendant doivent, en plus, satisfaire aux prescriptions de 8.3.3.1.4.

A un courant d'essai ayant une valeur égale à 90 % du courant de réglage, le déclencheur ne doit pas fonctionner, le courant étant maintenu

- pendant 0,2 s dans le cas de déclencheurs instantanés,
- pendant un temps égal à deux fois le retard fixé par le constructeur dans le cas de déclencheurs à retard indépendant.

A un courant d'essai ayant une valeur égale à 110 % du courant de réglage, le déclencheur doit fonctionner

- en 0,2 s dans le cas de déclencheurs instantanés,
- dans un délai égal à deux fois le retard fixé par le constructeur, dans le cas de déclencheurs à retard indépendant.

Pour les disjoncteurs ayant un pôle neutre identifié équipé d'un déclencheur de surcharge (voir 8.3.3.1.1), le courant d'essai pour ce déclencheur doit avoir une valeur égale à 1,2 fois 110 % du courant de réglage.

b) Fonctionnement à temps inverse

Les caractéristiques de fonctionnement des déclencheurs de surcharge à temps inverse doivent être vérifiées selon les prescriptions de 7.2.1.2.4, point b) 2).

Pour les disjoncteurs ayant un pôle neutre identifié équipé d'un déclencheur de surcharge (voir 8.3.3.1.1), les courants d'essai pour ce déclencheur doivent être choisis dans le tableau 6 sauf que le courant d'essai au courant conventionnel de déclenchement doit être multiplié par le facteur 1,2.

Pour les déclencheurs sensibles à la température de l'air ambiant, les caractéristiques de fonctionnement doivent être vérifiées à la température de référence (voir 4.7.3 et point b) de 5.2), le déclencheur étant alimenté sur tous ses pôles de phases.

Si l'essai est effectué à une température différente de l'air ambiant, il faut effectuer une correction conformément aux caractéristiques température/courant fournies par le constructeur.

Pour les déclencheurs déclarés insensibles à la température de l'air ambiant par le constructeur, les caractéristiques de fonctionnement doivent être vérifiées par deux mesures, l'une à 30 °C \pm 2 °C, l'autre à 20 °C \pm 2 °C ou à 40 °C \pm 2 °C, le déclencheur étant alimenté sur tous ses pôles de phases.

Un essai supplémentaire, à une valeur de courant devant faire l'objet d'un accord entre le constructeur et l'utilisateur, doit être effectué en vue de vérifier que les caractéristiques temps/courant du déclencheur correspondent (dans les limites des tolérances indiquées) aux courbes fournies par le constructeur.

NOTE En plus des essais décrits dans ce paragraphe, les déclencheurs des disjoncteurs sont également vérifiés sur chaque pôle séparément au cours des séquences d'essais III, IV et V (voir 8.3.5.1, 8.3.5.4, 8.3.6.1, 8.3.6.6, 8.3.7.4, 8.3.7.8, 8.3.8.1 et 8.3.8.6).

+A1:1997 - 89 -+A2:2001

8.3.3.1.3 Opening under overload conditions

a) Instantaneous or definite time-delay releases

The operation of instantaneous or definite time-delay overload releases (see note 1 of 4.7.1) shall be verified at 90 % and 110 % of the overload setting of the release. The test current shall have no asymmetry. The operation of multipole overload releases shall be verified with all phase poles loaded simultaneously with the test current.

Definite time-delay releases shall, in addition, comply with the requirements of 8.3.3.1.4.

At a test current having a value equal to 90 % of the current setting, the release shall not operate, the current being maintained

- for 0,2 s in the case of instantaneous releases,
- for an interval of time equal to twice the time-delay stated by the manufacturer, in the case of definite time-delay releases.

At a test current having a value equal to 110 % of the current setting, the release shall operate

- within 0,2 s in the case of instantaneous releases,
- within an interval of time equal to twice the time-delay stated by the manufacturer, in the case of definite time-delay releases.

For circuit-breakers having an identified neutral pole provided with an overload release (see 8.3.3.1.1), the test current for this release shall have a value equal to 1,2 times 110 % of the current setting.

b) Inverse time-delay releases

The operating characteristics of inverse time-delay overload releases shall be verified in accordance with the performance requirements of 7.2.1.2.4, item b), 2).

For circuit-breakers having an identified neutral pole provided with an overload release (see 8.3.3.1.1), the test currents for this release shall be those given in table 6 except that the test current at the conventional tripping current shall be multiplied by the factor 1,2.

For releases dependent on ambient air temperature, the operating characteristic shall be verified at the reference temperature (see 4.7.3 and 5.2, item b)), the release being energized on all phase poles.

If this test is made at a different ambient air temperature, a correction shall be made in accordance with the manufacturer's temperature/current data.

For releases declared by the manufacturer to be independent of ambient air temperature, the operating characteristic shall be verified by two measurements, one at 30 °C \pm 2 °C, the other at 20 °C \pm 2 °C or at 40 °C \pm 2 °C, the release being energized on all phase poles.

An additional test, at a current value to be agreed between manufacturer and user, shall be made to verify that the time/current characteristics of the release conform (within the stated tolerances) to the curves provided by the manufacturer.

NOTE In addition to the tests in this subclause, the releases of circuit-breakers are also verified on each pole singly, during test sequences III, IV and V (see 8.3.5.1, 8.3.5.4, 8.3.6.1, 8.3.6.6, 8.3.7.4, 8.3.7.8, 8.3.8.1 and 8.3.8.6).

8.3.3.1.4 Essai supplémentaire des déclencheurs à retard indépendant

a) Retard

Cet essai est effectué à un courant égal à 1,5 fois le courant de réglage:

- dans le cas de déclencheurs de surcharge, tous les pôles de phases étant chargés;
- pour les disjoncteurs ayant un pôle neutre identifié équipé d'un déclencheur de surcharge (voir 8.3.3.1.1), le courant d'essai pour ce déclencheur doit être égal à 1,5 fois le courant de réglage;
- dans le cas de déclencheurs de court-circuit, avec deux pôles parcourus en série par le courant d'essai, en utilisant successivement toutes les combinaisons possibles de pôles ayant un déclencheur de court-circuit.

Le retard mesuré doit se trouver entre les limites fixées par le constructeur.

b) Durée de non-déclenchement

Cet essai est effectué dans les mêmes conditions que pour l'essai du point a) ci-dessus pour les déclencheurs de surcharge et pour les déclencheurs de court-circuit:

Le courant d'essai égal à 1,5 fois le courant de réglage est d'abord maintenu pendant un intervalle de temps égal à la durée de non-déclenchement fixée par le constructeur; puis le courant est réduit au courant assigné et il est maintenu à cette valeur pendant un intervalle de temps égal au double du retard fixé par le constructeur. Le disjoncteur ne doit pas déclencher.

8.3.3.2 Essai des propriétés diélectriques

L'essai doit être effectué:

- conformément au 8.3.3.4 de la première partie si le constructeur a déclaré une valeur de tension assignée de tenue aux chocs U_{imp} (voir 4.3.1.3);
- conformément aux 8.3.3.2.1, 8.3.3.2.2, 8.3.3.2.3 et 8.3.3.2.4, si aucune valeur de $U_{\rm imp}$ n'a été déclarée, et pour la vérification de la tenue diélectrique spécifiée dans les paragraphes correspondants de la présente norme.

Les disjoncteurs aptes au sectionnement doivent être essayés conformément à 8.3.3.4 de la première partie. Cette prescription ne s'applique pas aux vérifications de tenue diélectrique effectuées au cours des séquences d'essais.

Pour les disjoncteurs aptes au sectionnement (voir 3.5) ayant une tension d'emploi $U_{\rm e}$ supérieure à $50~\rm V$, le courant de fuite doit être mesuré entre chaque pôle, les contacts étant en position d'ouverture, à une tension d'essai égale à $1,1~\rm U_{\rm e}$, et il ne doit pas dépasser $0,5~\rm mA$.

8.3.3.2.1 Etat du disjoncteur pour les essais

Les essais diélectriques doivent être faits sur un disjoncteur monté comme dans les conditions de service avec ses connexions internes et à l'état sec.

Dans le cas où le socle du disjoncteur est en matière isolante, des pièces métalliques doivent être placées à tous les points de fixation suivant les conditions nominales d'installation du disjoncteur, et ces pièces doivent être considérées comme faisant partie du bâti du disjoncteur. Lorsque le disjoncteur, qu'il comporte ou non un boîtier moulé, est placé dans une enveloppe isolante, celle-ci doit être recouverte extérieurement d'une feuille métallique reliée au bâti. Si la poignée de commande est métallique, elle doit être reliée au bâti; si elle est en matière isolante, elle doit être recouverte d'une feuille métallique reliée au bâti.

Lorsque la rigidité diélectrique du disjoncteur dépend d'un enrubannement des conducteurs ou de l'emploi d'une isolation spéciale, cet enrubannement ou cette isolation spéciale doit être également utilisé lors des essais.

8.3.3.1.4 Additional test for definite time-delay releases

a) Time-delay

This test is made at a current equal to 1.5 times the current setting:

- in the case of overload releases, with all phase poles loaded;
- for circuit-breakers having an identified neutral pole provided with an overload release (see 8.3.3.1.1), the test current for this release shall be 1,5 times the current setting;
- in the case of short-circuit releases, with two poles in series carrying the test current, using successively all possible combinations of poles having a short-circuit release.

The time-delay measured, shall be between the limits stated by the manufacturer.

b) Non-tripping duration

This test is made under the same conditions as for the test of item a) above for both overload and short-circuit releases:

Firstly, the test current equal to 1,5 times the current setting is maintained for a time interval equal to the non-tripping duration stated by the manufacturer; then, the current is reduced to the rated current and maintained at this value for twice the time-delay stated by the manufacturer. The circuit-breaker shall not trip.

8.3.3.2 Test of dielectric properties

The test shall be made:

- in accordance with 8.3.3.4 of Part 1 if the manufacturer has declared a value of the rated impulse withstand voltage U_{imp} (see 4.3.1.3);
- in accordance with 8.3.3.2.1, 8.3.3.2.2, 8.3.3.2.3 and 8.3.3.2.4, if no value of $U_{\rm imp}$ has been declared, and, for the verification of dielectric withstand, with the relevant subclauses of this standard.

Circuit-breakers suitable for isolation shall be tested according to 8.3.3.4 of Part 1. This requirement does not apply to the verification of dielectric withstand made during test sequences.

For circuit-breakers suitable for isolation (see 3.5) having an operational voltage $U_{\rm e}$ greater than 50 V, the leakage current shall be measured through each pole with the contacts in the open position, at a test voltage of 1,1 $U_{\rm e}$, and shall not exceed 0,5 mA.

8.3.3.2.1 Condition of the circuit-breaker for tests

Dielectric tests shall be made on a circuit-breaker mounted as under service conditions, including internal wiring, and in a dry state.

When the base of the circuit-breaker is of insulating material, metallic parts shall be placed at all the fixing points in accordance with the conditions of normal installation of the circuit-breaker and these parts shall be considered as part of the frame of the circuit-breaker. When the circuit-breaker, whether or not it is made with a moulded case, is mounted in an insulating enclosure, the latter shall be covered by metal foil connected to the frame. If the operating handle is metallic, it shall be connected to the frame; if it is of insulating material, it shall be covered by metal foil connected to the frame.

When the dielectric strength of the circuit-breaker is dependent on the taping of leads or the use of special insulation, such taping or special insulation shall also be used during the tests.

8.3.3.2.2 Application de la tension d'essai

Quand les circuits d'un disjoncteur comportent des éléments tels que moteurs, appareils de mesure, interrupteurs à manoeuvre brusque et dispositifs à semi-conducteurs qui, selon leurs spécifications particulières, ont été soumis à des tensions d'essai diélectrique inférieures à celles spécifiées au 8.3.3.2.3, de tels éléments doivent être déconnectés avant que le disjoncteur ne soit soumis à l'essai prescrit.

a) Circuit principal

Pour ces essais, tous les circuits de commande et les circuits auxiliaires qui ne sont pas normalement reliés au circuit principal doivent être raccordés à toutes les parties du disjoncteur normalement reliées à la terre en service.

La tension d'essai doit être appliquée pendant 1 min dans les conditions suivantes:

- 1) le disjoncteur étant en position de fermeture;
 - entre toutes les parties sous tension de tous les pôles, réunies entre elles, et le bâti du disjoncteur;
 - entre chacun des pôles et tous les autres pôles réunis au bâti du disjoncteur.
- 2) le disjoncteur étant en position d'ouverture et, en plus, en position de déclenchement, le cas échéant, si elle existe:
- entre toutes les parties sous tension de tous les pôles, réunies entre elles, et le bâti du disjoncteur;
- entre les bornes d'un côté réunies entre elles et les bornes de l'autre côté réunies entre elles.
- b) Circuits de commande et circuits auxiliaires

Pour ces essais, le circuit principal doit être raccordé à toutes les parties du disjoncteur normalement reliées à la terre en service.

La tension d'essai doit être appliquée pendant 1 min dans les conditions suivantes:

- entre l'ensemble des circuits de commande et des circuits auxiliaires qui ne sont pas normalement reliés au circuit principal, réunis entre eux, et le bâti du disjoncteur;
- 2) s'il y a lieu, entre chacune des parties des circuits de commande et des circuits auxiliaires pouvant se trouver isolés des autres en service normal et l'ensemble des autres parties réunies entre elles.

8.3.3.2.3 Valeur de la tension d'essai

La tension d'essai doit être de forme pratiquement sinusoïdale; sa fréquence doit être comprise entre 45 Hz et 62 Hz. Les caractéristiques de la tension d'essai doivent être telles que, lorsque la valeur de la tension d'essai est ajustée à celle demandée par le tableau 12 et est ensuite court-circuitée, le courant de sortie ne doit pas être inférieur à 0,2 A.

La valeur de la tension d'essai doit être la suivante:

- a) pour le circuit principal, ainsi que pour les circuits de commande et les circuits auxiliaires qui ne sont pas couverts par le point b) ci-après, conforme au tableau 12;
- b) pour les circuits de commande et les circuits auxiliaires que le constructeur indique comme ne devant pas être reliés au circuit principal:
 - lorsque la tension assignée d'isolement U_i n'excède pas 60 V: 1 000 V;
 - lorsque la tension assignée d'isolement U_i est supérieure à 60 V: 2 U_i + 1 000 V avec un minimum de 1 500 V.

8.3.3.2.2 Application of the test voltage

When the circuits of a circuit-breaker include devices such as motors, instruments, snap switches and semiconductor devices which, according to their relevant specifications, have been subjected to dielectric test voltages lower than those specified in 8.3.3.2.3, such devices shall be disconnected before subjecting the circuit-breaker to the required tests.

a) Main circuit

For these tests, any control and auxiliary circuits, which are not normally connected to the main circuit, shall be connected to all parts of the circuit-breaker normally earthed in service.

The test voltage shall be applied for 1 min as follows:

- 1) with the circuit-breaker in the closed position:
 - between all live parts of all poles connected together and the frame of the circuitbreaker;
 - between each pole and all the other poles connected to the frame of the circuitbreaker:
- 2) with the circuit-breaker in the open position and, additionally, in the tripped position, if any:
 - between all live parts of all poles connected together and the frame of the circuitbreaker;
 - between the terminals of one side connected together and the terminals of the other side connected together.

b) Control and auxiliary circuits

For these tests, the main circuit shall be connected to all parts of the circuit-breaker normally earthed in service.

The test voltage shall be applied for 1 min as follows:

- between all the control and auxiliary circuits which are not normally connected to the main circuit, connected together, and the frame of the circuit-breaker;
- where appropriate, between each part of the control and auxiliary circuits which may be isolated from the other parts during normal operation and all the other parts connected together.

8.3.3.2.3 Value of the test voltage

The test voltage shall have a practically sinusoidal waveform, and a frequency between 45 Hz and 62 Hz. The characteristics of the test voltage shall be such that, when the value of the test voltage is adjusted to that required by table 12 and is then short-circuited, the output shall be not less than 0,2 A.

The value of the 1 min test voltage shall be as follows:

- a) for the main circuit and for the control and auxiliary circuits which are not covered by item b) below, in accordance with table 12;
- b) for control circuits and auxiliary circuits which are indicated by the manufacturer as unsuitable for connection to the main circuit:
 - where the rated insulation voltage U_i does not exceed 60 V: 1 000 V;
 - where the rated insulation voltage U_i exceeds 60 V: $2U_i$ + 1 000 V, with a minimum of 1 500 V.

Tableau 12 – Tension d'essai diélectrique en fonction de la tension assignée d'isolement

Tension assignée d'isolement $oldsymbol{U_{I}}$	Tension d'essai diélectrique (courant alternatif)					
V	V (valeur efficace)					
<i>U</i> i ≤ 60	1 000					
60 < <i>U</i> i ≤ 300	2 000					
$300 < U_1 \le 690$	2 500					
690 < <i>U</i> i ≤ 800	3 000					
800 < <i>U</i> i ≤ 1 000	3 500					
1 000 < <i>U</i> i ≤ 1 500 *	3 500					
En courant continu seulement.						

8.3.3.2.4 Résultats à obtenir

L'essai est considéré comme satisfaisant s'il n'y a ni perforation ni contournement.

8.3.3.3 Essais du fonctionnement mécanique et de l'aptitude au fonctionnement en service

8.3.3.3.1 Conditions générales d'essai

Le disjoncteur doit être monté comme indiqué au 8.3.2.1, sauf que, pour ces essais, il peut être monté sur un châssis métallique. Le disjoncteur doit être protégé contre tout chauffage ou refroidissement extérieur excessif.

Les essais doivent être effectués à la température ambiante du local d'essai.

La tension d'alimentation de commande de chaque circuit de commande doit être mesurée à ses bornes sous le courant assigné.

Toutes les résistances ou impédances faisant partie du dispositif de commande doivent être en circuit. Cependant, aucune impédance supplémentaire ne doit être insérée entre la source de courant et les bornes du dispositif.

Les essais des 8.3.3.3.2, 8.3.3.3.3 et 8.3.3.3.4 doivent être faits sur le même disjoncteur, mais l'ordre dans lequel ces essais sont effectués est facultatif. Cependant pour les essais des déclencheurs à minimum de tension et les déclencheurs shunt, les essais de 8.3.3.3.2 et 8.3.3.3 peuvent être, d'une autre façon, faits sur un échantillon neuf.

Si l'on désire, dans le cas des disjoncteurs pouvant être entretenus, effectuer un nombre de manoeuvres supérieur à celui spécifié au tableau 8, ces manoeuvres supplémentaires doivent être effectuées d'abord, suivies par des opérations d'entretien conformes aux instructions du constructeur et, ensuite, par le nombre de manoeuvres prévu au tableau 8, sans qu'aucune autre opération d'entretien soit permise au cours du restant de cette séguence d'essais.

NOTE Pour la commodité de l'essai, il est permis de diviser chacun de ces essais en deux périodes ou plus. Aucune de ces périodes, toutefois, ne devra être inférieure à 3 h.

8.3.3.3.2 Dispositions constructives et fonctionnement mécanique

a) Dispositions constructives

Un disjoncteur débrochable doit être vérifié suivant les prescriptions de 7.1.1.

Il doit être vérifié qu'un disjoncteur à manoeuvre par accumulation d'énergie est conforme au 7.2.1.1.5 en ce qui concerne l'indication de la charge et le sens de manoeuvre du mécanisme manuel d'accumulation d'énergie.

Table 12 - Dielectric test voltage corresponding to the rated insulation voltage

Rated insulation voltage <i>U</i> _i	Dielectric test voltage (a.c. r.m.s.)
V	V
<i>U</i> _i ≤ 60	1 000
$60 < U_{ } \le 300$	2 000
$300 < U_{i} \leq 690$	2 500
$690 < U_{\rm i} \leq 800$	3 000
$800 < U_{\rm i} \leq 1000$	3 500
1 000 < U _i ≤ 1 500 *	3 500
* For d.c. only.	

8.3.3.2.4 Results to be obtained

The test is considered to have been passed if there is no puncture or flash-over.

8.3.3.3 Tests of mechanical operation and of operational performance capability

8.3.3.3.1 General test conditions

The circuit-breaker shall be mounted in accordance with 8.3.2.1 except that, for the purpose of these tests, the circuit-breaker may be mounted on a metal frame. The circuit-breaker shall be protected against undue external heating or cooling.

The tests shall be made at the ambient temperature of the test room.

The control supply voltage of each control circuit shall be measured at its terminals at the rated current.

All resistors or impedances forming part of the control device shall be in circuit, However, no supplementary impedances shall be inserted between the current source and the terminals of the device.

The tests of 8.3.3.3.2, 8.3.3.3.3 and 8.3.3.3.4 shall be made on the same circuit-breaker but the order in which these tests are carried out is optional. However, for the tests of undervoltage and shunt releases the tests of 8.3.3.3.2 and 8.3.3.3.3 may, alternatively, be made on a new sample.

In the case of maintainable circuit-breakers, if it is desired to carry out a number of operations greater than that specified in table 8, these additional operations shall be carried out first, followed by maintenance in accordance with the manufacturer's instructions, and then by the number of operations in accordance with table 8, without any further maintenance being permitted during the remainder of this test sequence.

NOTE For convenience of testing it is permissible to subdivide each of the tests into two or more periods. No such period should, however, be less than 3 h.

8.3.3.3.2 Construction and mechanical operation

a) Construction

A withdrawable circuit-breaker shall be checked for the requirements stated in 7.1.1.

A circuit-breaker with stored energy operation shall be checked for compliance with 7.2.1.1.5, regarding the charge indicator and the direction of operation of manual energy storing.

b) Fonctionnement mécanique

Les essais doivent être effectués comme spécifié au 8.3.3.3.1 en vue de:

- vérifier le déclenchement satisfaisant du disjoncteur, le dispositif de fermeture étant alimenté;
- vérifier le comportement satisfaisant du disjoncteur lorsque la manoeuvre de fermeture est provoquée, le dispositif de déclenchement étant en action;
- vérifier que la mise en action d'un dispositif à commande par source d'énergie extérieure, lorsque le disjoncteur est déjà fermé, ne provoque aucun dommage au disjoncteur et ne met pas en danger l'opérateur.

Le fonctionnement mécanique d'un disjoncteur peut être vérifié à vide.

Un disjoncteur à manoeuvre dépendante à source d'énergie extérieure doit satisfaire aux prescriptions de 7.2.1.1.3.

Un disjoncteur à manoeuvre dépendante à source d'énergie extérieure doit fonctionner avec son mécanisme de manoeuvre chargé aux limites minimale et maximale fixées par le constructeur.

Un disjoncteur à manoeuvre par accumulation d'énergie doit être conforme aux prescriptions de 7.2.1.1.5 avec une tension d'alimentation auxiliaire égale à 85 % et à 110 % de la tension assignée d'alimentation de commande. On doit aussi vérifier que les contacts mobiles ne peuvent pas s'écarter de la position d'ouverture lorsque la charge du mécanisme de manoeuvre est légèrement inférieure à la pleine charge mise en évidence par le dispositif indicateur.

Les contacts d'un disjoncteur à déclenchement libre ne doivent pas pouvoir être maintenus en contact ou en position de fermeture lorsque le déclencheur est en position de déclenchement.

Si les durées de fermeture et d'ouverture d'un disjoncteur sont indiquées par le constructeur, elles doivent être conformes aux valeurs indiquées.

c) Déclencheurs à minimum de tension

Les déclencheurs à minimum de tension doivent satisfaire aux prescriptions de 7.2.1.3 de la partie 1. Pour cela, le déclencheur doit être adapté au disjoncteur ayant le courant maximal assigné pour lequel le déclencheur convient.

Tension de retombée

Il faut vérifier que le déclencheur fonctionne pour ouvrir le disjoncteur entre les limites de tension spécifiées.

La tension doit être réduite en partant de la tension assignée de commande pour atteindre 0 V en 30 s environ.

L'essai pour la limite inférieure est fait sans courant dans le circuit principal et sans préchauffage préalable de la bobine du déclencheur.

Dans le cas d'un déclencheur avec une gamme de tensions assignées de commande, cet essai est effectué à la tension maximale de la gamme.

L'essai pour la limite supérieure est effectué en partant d'une température constante correspondant à l'application de la tension d'alimentation assignée de commande au déclencheur et au courant assigné dans les pôles principaux du disjoncteur. Cet essai peut être combiné avec l'essai d'échauffement de 8.3.3.6.

Dans le cas d'un déclencheur avec une gamme de tensions assignées de commande, cet essai est effectué aux deux tensions assignées minimale et maximale d'alimentation de commande.

ii) Essais pour les limites de fonctionnement

En démarrant avec le disjoncteur ouvert, à la température de la salle d'essai, et avec la tension d'alimentation égale à 30 % de la tension assignée maximale de commande, il doit être vérifié que le disjoncteur ne peut pas être fermé en manoeuvrant l'organe de commande. Lorsque la tension d'alimentation est augmentée jusqu'à 85 % de la tension assignée minimale de commande, il doit être vérifié que le disjoncteur peut être fermé en manoeuvrant l'organe de commande.

b) Mechanical operation

Tests shall be made as specified in 8.3.3.3.1 for the following purposes:

- to prove satisfactory tripping of the circuit-breaker with the closing device energized;
- to prove satisfactory behaviour of the circuit-breaker when the closing operation is initiated with the tripping device actuated;
- to prove that the operation of a power-operated device, when the circuit-breaker is already closed, shall neither cause damage to the circuit-breaker nor endanger the operator.

The mechanical operation of a circuit-breaker may be checked under no-load conditions.

A circuit-breaker with dependent power operation shall comply with the requirements stated in 7.2.1.1.3.

A circuit-breaker with dependent power operation shall operate with the operating mechanism charged to the minimum and maximum limits stated by the manufacturer.

A circuit-breaker with stored energy operation shall comply with the requirements stated in 7.2.1.1.5 with the auxiliary supply voltage at 85 % and 110 % of the rated control supply voltage. It shall also be verified that the moving contacts cannot be moved from the open position when the operating mechanism is charged to slightly below the full charge as evidenced by the indicating device.

For a trip-free circuit-breaker it shall not be possible to maintain the contacts in the touching or closed position when the tripping release is in the position to trip the circuit-breaker.

If the closing and opening times of a circuit-breaker are stated by the manufacturer, such times shall comply with the stated values.

c) Undervoltage releases

Undervoltage releases shall comply with the requirements of 7.2.1.3 of Part 1. For this purpose, the release shall be fitted to a circuit-breaker having the maximum current rating for which the release is suitable.

i) Drop-out voltage

It shall be verified that the release operates to open the circuit-breaker between the voltage limits specified.

The voltage shall be reduced from rated control supply voltage at a rate to reach 0 V in approximately 30 s.

The test for the lower limit is made without current in the main circuit and without previous heating of the release coil.

In the case of a release with a range of rated control supply voltage, this test applies to the maximum voltage of the range.

The test for the upper limit is made starting from a constant temperature corresponding to the application of rated control supply voltage to the release and rated current in the main poles of the circuit-breaker. This test may be combined with the temperature-rise test of 8.3.3.6.

In the case of a release with a range of rated control supply voltage, this test is made at both the minimum and maximum rated control supply voltages.

ii) Test for limits of operation

Starting with the circuit-breaker open, at the temperature of the test room, and with the supply voltage at 30 % rated maximum control supply voltage, it shall be verified that the circuit-breaker cannot be closed by the operation of the actuator. When the supply voltage is raised to 85 % of the minimum control supply voltage, it shall be verified that the circuit-breaker can be closed by the operation of the actuator.

- 98 - 60947-2 © CEI:1995+A1:1997 +A2:2001

iii) Fonctionnement dans des conditions maximum de tension

Le disjoncteur étant fermé sans courant dans le circuit principal, il doit être vérifié que le déclencheur à minimum de tension supporte l'application d'une tension égale à 110 % de la tension assignée d'alimentation de commande pendant 4 h sans altérer ses performances.

d) Déclencheurs shunt

Les déclencheurs shunt doivent satisfaire aux prescriptions de 7.2.1.4 de la première partie. Pour cela le déclencheur doit être adapté au disjoncteur ayant le courant maximal assigné pour lequel le déclencheur convient.

Il doit être vérifié que le déclencheur fonctionne pour ouvrir le disjoncteur à 70 % de la tension assignée de commande, celui-ci étant essayé à la température ambiante de +55 °C \pm 2 °C sans courant dans les pôles principaux du disjoncteur. Dans le cas d'un déclencheur ayant une gamme de tensions assignées de commande, la tension d'essai doit correspondre à 70 % de la tension minimale assignée de commande.

8.3.3.3. Aptitude au fonctionnement en service sans courant

Ces essais doivent être effectués dans les conditions spécifiées au 8.3.2.1. Le nombre de cycles de manoeuvres à effectuer sur le disjoncteur est indiqué dans la colonne 3 du tableau 8; le nombre de cycles de manoeuvres par heure est indiqué dans la colonne 2 de ce tableau.

Les essais doivent être effectués sans courant dans le circuit principal du disjoncteur.

Pour les disjoncteurs qui peuvent être équipés de déclencheurs-shunt, 10 % du nombre total des essais doivent être des manoeuvres de fermeture/déclenchement, c'est-à-dire avec le déclencheur shunt alimenté à la tension maximale assignée d'alimentation de commande.

Pour les disjoncteurs qui peuvent être équipés de déclencheurs à minimum de tension, 10 % du nombre total des essais doivent être des manoeuvres de fermeture/déclenchement à la tension minimale assignée d'alimentation de commande, cette tension étant retirée du déclencheur après chaque manoeuvre de fermeture, afin de déclencher le disjoncteur.

Dans chaque cas la moitié du nombre de manoeuvres doit être fait au début des essais et l'autre moitié à la fin des essais.

Pour les disjoncteurs équipés de déclencheurs à minimum de tension, avant l'essai de fonctionnement en service, le déclencheur à minimum de tension non alimenté, il doit être vérifié que le disjoncteur ne peut pas être fermé en essayant 10 fois de le fermer.

Les essais doivent être faits sur un disjoncteur muni de son propre mécanisme de fermeture. Dans le cas de disjoncteurs munis d'un dispositif électrique ou pneumatique de fermeture, ce dispositif doit être alimenté à sa tension assignée d'alimentation de commande ou à sa pression assignée. Des précautions doivent être prises pour éviter que les échauffements des organes électriques ne dépassent pas les limites indiquées au tableau 7.

Les disjoncteurs manoeuvrés à la main doivent être manoeuvrés comme en usage normal.

8.3.3.4 Aptitude au fonctionnement en service avec courant

L'état et le mode d'installation du disjoncteur doivent être ceux spécifiés au 8.3.2.1, le circuit d'essai étant conforme au 8.3.3.5.2 de la première partie.

Le nombre et la fréquence des cycles de manoeuvres à effectuer sont donnés dans les colonnes 2 et 4 du tableau 8.

iii) Performance under overvoltage conditions

With the circuit-breaker closed and without current in the main circuit, it shall be verified that the undervoltage release will withstand the application of 110 % rated control supply voltage for 4 h without impairing its functions.

d) Shunt releases

Shunt releases shall comply with the requirements of 7.2.1.4 of Part 1. For this purpose, the release shall be fitted to a circuit-breaker having the maximum rated current for which the release is suitable.

It shall be verified that the release will operate to open the circuit-breaker at 70 % rated control supply voltage when tested at an ambient temperature of +55 °C ± 2 °C without current in the main poles of the circuit-breaker. In the case of a release having a range of rated control supply voltages, the test voltage shall be 70 % of the minimum rated control supply voltage.

8.3.3.3.3 Operational performance capability without current

These tests shall be made under the conditions specified in 8.3.2.1. The number of operating cycles to be carried out on the circuit-breaker is given in column 3 of table 8; the number of operating cycles per hour is given in column 2 of this table.

The tests shall be carried out without current in the main circuit of the circuit-breaker.

For circuit-breakers which can be fitted with shunt releases, 10 % of the total number of operating cycles shall be closing/tripping operations, with the shunt release energized at maximum rated control supply voltage.

For circuit-breakers which can be fitted with undervoltage releases, 10 % of the total number of operating cycles shall be closing/tripping operations at the minimum rated control supply voltage, this voltage to the release being removed after each closing operation, to trip the circuit-breaker.

In each case, half the relevant number of operating cycles shall be made at the beginning and the other half at the end of the tests.

For circuit-breakers fitted with undervoltage releases, prior to the operational performance test, without the undervoltage release being energized, it shall be verified that the circuit-breaker cannot be closed by attempting 10 times to effect a closing operation of the circuit-breaker.

The tests shall be made on a circuit-breaker with its own closing mechanism. In the case of circuit-breakers fitted with electrical or pneumatic closing devices, these devices shall be supplied at their rated control supply voltage or at their rated pressure. Precautions shall be taken to ensure that the temperature-rises of the electrical components do not exceed the limits indicated in table 7.

In the case of manually operated circuit-breakers, they shall be operated as in normal use.

8.3.3.3.4 Operational performance capability with current

The circuit-breaker condition and method of installation shall be as specified in 8.3.2.1, the test circuit being in accordance with 8.3.3.5.2 of Part 1.

The operating rate and the number of operating cycles to be carried out are given in columns 2 and 4 of table 8.

On doit faire fonctionner le disjoncteur de façon qu'il établisse et qu'il coupe son courant assigné sous sa tension assignée d'emploi maximale, fixée par le constructeur, avec un facteur de puissance ou une constante de temps conforme au tableau 11, les tolérances étant comme indiqué en 8.3.2.2.2.

Les essais sur les disjoncteurs prévus pour le courant alternatif doivent être effectués à une fréquence comprise entre 45 Hz et 62 Hz.

Pour les disjoncteurs munis de déclencheurs réglables, les essais doivent être effectués avec les déclencheurs réglés à leur valeur de réglage maximale en surcharge et minimale en court-circuit.

Les essais doivent être faits sur un disjoncteur muni de son propre mécanisme de fermeture. Dans le cas de disjoncteurs munis d'un dispositif électrique ou pneumatique de fermeture, ce dispositif doit être alimenté à sa tension assignée d'alimentation de commande ou à sa pression assignée. Des précautions doivent être prises pour s'assurer que les échauffements des organes électriques n'excèdent pas les valeurs indiquées au tableau 7.

Les disjoncteurs manoeuvrés à la main doivent être manoeuvrés comme en usage normal.

8.3.3.5 Essai supplémentaire d'aptitude au fonctionnement en service sans courant pour les disjoncteurs débrochables

Un essai d'aptitude au fonctionnement en service doit être effectué sur le mécanisme de débrochage et les dispositifs de verrouillage associés des disjoncteurs débrochables.

Le nombre de cycles de manoeuvres doit être 100.

Après cet essai, les contacts de sectionnement, le mécanisme de débrochage et les dispositifs de verrouillage doivent pouvoir assurer leur fonction. La vérification doit être effectuée par inspection.

8.3.3.4 Fonctionnement en surcharge

Cet essai s'applique aux disjoncteurs de courant assigné inférieur ou égal à 630 A.

NOTE 1 Sur demande du constructeur, cet essai peut aussi être effectué sur des disjoncteurs de courant assigné supérieur à 630 A.

L'état et le mode d'installation du disjoncteur doivent être ceux spécifiés au 8.3.2.1, et le circuit d'essai doit être conforme au 8.3.3.5.2 de la première partie.

L'essai doit être effectué à la tension maximale d'emploi $U_{\rm e\ max}$ assignée par le constructeur au disjoncteur.

Pour les disjoncteurs munis de déclencheurs réglables, cet essai doit être effectué avec les déclencheurs réglés à leur valeur de réglage maximale.

Le disjoncteur doit être ouvert neuf fois à la main et trois fois de façon automatique par l'action d'un déclencheur de surcharge, sauf dans le cas de disjoncteurs ayant un déclencheur de court-circuit dont le réglage maximal est inférieur au courant d'essai, pour lesquels toutes les 12 manoeuvres doivent être automatiques.

NOTE 2 Si le moyen d'essai ne résiste pas au passage de l'énergie apparaissant pendant le fonctionnement automatique, l'essai peut être effectué de la façon suivante, avec l'accord du constructeur:

- 12 manœuvres manuelles;
- trois manœuvres supplémentaires avec une ouverture automatique, faites sous toute tension opportune.

Au cours de chacun des cycles manuels, le disjoncteur doit rester fermé pendant une durée suffisante pour assurer l'établissement complet du courant, mais ne dépassant pas 2 s.

The circuit-breaker shall be operated so as to make and break its rated current at its maximum rated operational voltage, assigned by the manufacturer, at a power factor or time constant as applicable in accordance with table 11, the tolerance being in accordance with 8.3.2.2.2.

Tests on a.c. rated circuit-breakers shall be made at a frequency between 45 Hz and 62 Hz.

For circuit-breakers fitted with adjustable releases, the tests shall be made with the overload setting at maximum and the short-circuit setting at minimum.

The tests shall be made on a circuit-breaker with its own closing mechanism. In the case of circuit-breakers fitted with electrical or pneumatic closing devices, these devices shall be supplied at their rated control supply voltage or at their rated pressure. Precautions shall be taken to ensure that the temperature rises of the electrical components do not exceed the values indicated in table 7.

Manually operated circuit-breakers shall be operated as in normal use.

8.3.3.5 Additional test of operational performance capability without current for withdrawable circuit-breakers

A test of operational performance capability without current shall be carried out on the withdrawal mechanism and associated interlocks of withdrawable circuit-breakers.

The number of operating cycles shall be 100.

After this test, the isolating contacts, withdrawal mechanism and interlocks shall be suitable for further service. This shall be verified by inspection.

8.3.3.4 Overload performance

This test applies to circuit-breakers of rated current up to and including 630 A.

NOTE 1 At the request of the manufacturer, the test may also be made on circuit-breakers of rated current higher than 630 A.

The circuit-breaker condition and method of installation shall be as specified in 8.3.2.1, and the test circuit in accordance with 8.3.3.5.2 of Part 1.

The test shall be made at the maximum operational voltage $U_{\rm e\ max}$ assigned by the manufacturer to the circuit-breaker.

For circuit-breakers fitted with adjustable releases, the test shall be made with its releases set at maximum.

The circuit-breaker shall be opened nine times manually and three times automatically by the action of an overload release, except for circuit-breakers having a short-circuit release of a maximum setting less than the test current, in which case all 12 operations shall be automatic.

NOTE 2 If the testing means do not withstand the let-through energy occurring during the automatic operation, the test may be performed as follows, with the agreement of the manufacturer:

- 12 manual operations;
- three additional operations with automatic opening, made at any convenient voltage.

During each of the manually operated cycles, the circuit-breaker shall remain closed for a time sufficient to ensure that the full current is established, but not exceeding 2 s.

Le nombre de cycles de manoeuvres par heure doit être comme spécifié dans la colonne 2 du tableau 8. Si le disjoncteur ne s'accroche pas à la cadence spécifiée, cette cadence peut être réduite suffisamment pour permettre au disjoncteur de se fermer après l'établissement complet du courant.

Si les installations de la station d'essai ne permettent pas d'opérer à la cadence de manoeuvre spécifiée au tableau 8, on pourra adopter une cadence plus faible, mais ce fait devra être mentionné dans le compte rendu d'essais.

Les valeurs du courant et de la tension de rétablissement d'essai doivent être conformes au tableau 13, avec le facteur de puissance ou la constante de temps, le cas échéant, conformes au tableau 11, les tolérances étant comme indiqué en 8.3.2.2.2.

NOTE Avec l'accord du constructeur, cet essai peut être effectué dans des conditions plus sévères que celles spécifiées.

Tableau 13 - Caractéristiques du circuit d'essai pour le fonctionnement en surcharge

	Courant alternatif	Courant continu				
Courant	6 × <i>I</i> n	2,5 × <i>I</i> _n				
Tension de rétablissement	1,05 × <i>U</i> emax	1,05 <i>U</i> emax				
U _{emax} = tension d'emploi maximale du disjoncteur						

Les essais sur les disjoncteurs prévus pour le courant alternatif doivent être effectués à une fréquence comprise entre 45 Hz et 62 Hz.

Le courant présumé aux bornes d'alimentation du disjoncteur doit être au moins égal à la plus petite des deux valeurs suivantes: 10 fois la valeur du courant d'essai ou au moins 50 kA.

8.3.3.5 Vérification de la tenue diélectrique

Il doit être vérifié que le disjoncteur est capable de supporter, sans entretien, une tension égale à deux fois sa tension assignée correspondante d'emploi $U_{\rm e}$ avec un minimum de 1 000 V, selon 8.3.3.2.2 (point a).

Pour les disjoncteurs aptes au sectionnement, le courant de fuite doit être mesuré selon 8.3.3.2 sauf que le courant de fuite ne doit pas dépasser 2 mA.

8.3.3.6 Vérification de l'échauffement

A la suite de l'essai de 8.3.3.5, un essai d'échauffement doit être effectué au courant thermique conventionnel, conformément au 8.3.2.5. A la fin de l'essai, les valeurs des échauffements ne doivent pas dépasser celles spécifiées au tableau 7.

8.3.3.7 Vérification des déclencheurs de surcharge

Immédiatement après l'essai effectué conformément au 8.3.3.6, le fonctionnement des déclencheurs de surcharge doit être vérifié à 1,45 fois la valeur de leur courant de réglage, à la température de référence (voir 7.2.1.2.4, point b) 2)).

Tous les pôles doivent être reliés en série pour cet essai. En variante, cet essai peut être effectué avec une alimentation triphasée.

Cet essai peut être effectué sous toute tension convenable.

The number of operating cycles per hour shall be that specified in column 2 of table 8. If the circuit-breaker does not latch in at the specified rate, this rate may be reduced sufficiently so that the circuit-breaker may be closed, the full current being established.

If test conditions at the testing station do not permit testing at the operating rate given in table 8, a slower rate may be used, but details shall be stated in the test report.

The values of the test current and of the recovery voltage shall be in accordance with table 13, at the power factor or time constant, as applicable, in accordance with table 11, the tolerances being in accordance with 8.3.2.2.2.

NOTE With the agreement of the manufacturer the test may be made under more severe conditions than specified.

Table 13 - Test circuit characteristics for overload performance

	a.c.	d.c.				
Current	6 I _n	2,5 I _n				
Recovery voltage	1,05 <i>U</i> _{e max}	1,05 U _{e max}				
U _{e max} = maximum operational voltage of the circuit-breaker.						

Tests on a.c. rated circuit-breakers shall be made at a frequency between 45 Hz and 62 Hz.

The prospective current at the supply terminals of the circuit-breaker shall be at least 10 times the test current, or at least 50 kA, whichever of the two values is the lower.

8.3.3.5 Verification of dielectric withstand

It shall be verified that the circuit-breaker is capable, without maintenance, of withstanding a voltage equal to twice the corresponding rated operational voltage $U_{\rm e}$, with a minimum of 1 000 V, according to 8.3.3.2.2, item a).

For circuit-breakers suitable for isolation the leakage current shall be measured in accordance with 8.3.3.2, except that the leakage current shall not exceed 2 mA.

8.3.3.6 Verification of temperature-rise

Following the test according to 8.3.3.5, a temperature-rise test shall be made at the conventional thermal current according to 8.3.2.5. At the end of the test, the values of temperature-rise shall not exceed those specified in table 7.

8.3.3.7 Verification of overload releases

Immediately following the test according to 8.3.3.6, the operation of overload releases shall be verified at 1,45 times the value of their current setting at the reference temperature (see 7.2.1.2.4, item b), 2)).

For this test, all poles shall be connected in series. Alternatively, this test may be made using a 3-phase supply.

This test may be made at any convenient voltage.

La durée de fonctionnement ne doit pas dépasser la durée conventionnelle de déclenchement.

NOTE 1 Avec l'accord du constructeur, on peut admettre un délai entre les essais des 8.3.3.6 et 8.3.3.7.

NOTE 2 En variante, cet essai peut être effectué à la température de l'air ambiant, à un courant d'essai modifié conformément aux caractéristiques température/courant fournies par le constructeur, pour les déclencheurs sensibles à la température ambiante.

8.3.3.8 Vérification des déclencheurs à minimum de tension et des déclencheurs-shunt

Les disjoncteurs équipés de déclencheurs à minimum de tension doivent être soumis à l'essai de 8.3.3.3.2, point c) i), sauf que les essais pour les limites supérieures et inférieures doivent être effectués à la température de la salle d'essai sans courant dans le circuit principal. Le déclencheur ne doit pas fonctionner à 70 % de la tension minimale d'alimentation assignée de commande et doit fonctionner à 35 % de la tension maximale assignée de commande.

Les disjoncteurs équipés avec des déclencheurs shunt doivent être soumis à l'essai de 8.3.3.3.2, point d), sauf que l'essai peut être effectué à la température de la salle d'essai. Le fonctionnement du déclencheur doit s'effectuer à 70 % de la tension d'alimentation minimale assignée de commande.

8.3.3.9 Vérification de la position des contacts principaux

Pour les disjoncteurs aptes au sectionnement (voir 3.5), après la vérification de 8.3.3.7, un essai doit être effectué afin de vérifier l'efficacité de l'indication de la position des contacts principaux en accord avec 8.2.5 de la partie 1.

8.3.4 Séquence d'essais II: Pouvoir assigné de coupure de service en court-circuit

Sauf dans les cas où s'applique la séquence d'essais combinée (voir 8.3.8), cette séquence d'essais s'applique à tous les disjoncteurs et comprend les essais suivants:

Essai	Paragraphe
Pouvoir assigné de coupure de service en court-circuit	8.3.4.1
Vérification de l'aptitude au fonctionnement	8.3.4.2
Tenue diélectrique	8.3.4.3
Vérification de l'échauffement	8.3.4.4
Vérification des déclencheurs de surcharge	8.3.4.5

Dans le cas où $I_{cs} = I_{cu}$, voir 8.3.5.

Le nombre d'échantillons à essayer et le réglage des déclencheurs réglables doivent être conformes au tableau 10.

8.3.4.1 Essai de pouvoir assigné de coupure de service en court-circuit

Un essai de court-circuit est effectué dans les conditions générales de 8.3.2, la valeur du courant présumé $I_{\rm cs}$ déclarée par le constructeur étant conforme au 4.3.5.2.2.

Le facteur de puissance pour cet essai doit être conforme au tableau 11, pour le courant d'essai approprié.

La séguence de manoeuvres doit être:

$$O-t-CO-t-CO$$

Dans le cas des disjoncteurs à fusibles incorporés, tout fusible fondu doit être remplacé après chaque manoeuvre. Il peut être nécessaire d'augmenter l'intervalle de temps t pour cette raison.

The operating time shall not exceed the conventional tripping time.

NOTE 1 With the manufacturer's consent a time interval between the tests of 8.3.3.6 and 8.3.3.7 may occur.

NOTE 2 The test may, alternatively, be made at the ambient air temperature at a test current corrected in accordance with the manufacturer's temperature/current data, for releases dependent on ambient temperature.

8.3.3.8 Verification of undervoltage and shunt releases

Circuit-breakers fitted with undervoltage releases shall be subjected to the test of 8.3.3.3.2, item c), i), except that the tests for upper and lower limits shall be made at the temperature of the test room without current in the main circuit. The release shall not operate at 70 % of the minimum control supply voltage and shall operate at 35 % of the maximum rated control supply voltage.

Circuit-breakers fitted with shunt releases shall be subjected to the test of 8.3.3.3.2, item d), except that the test may be made at the temperature of the test room. The release shall operate at 70 % of the minimum rated control supply voltage.

8.3.3.9 Verification of the main contact position

For circuit-breakers suitable for isolation (see 3.5), following the verification of 8.3.3.7, a test shall be made to verify the effectiveness of the indication of the main contact position in accordance with 8.2.5 of part 1.

8.3.4 Test sequence II: Rated service short-circuit breaking capacity

Except when the combined test sequence applies (see 8.3.8), this test sequence applies to all circuit-breakers and comprises the following tests:

Test	Subclause
Rated service short-circuit breaking capacity	8.3.4.1
Verification of operational capability	8.3.4.2
Dielectric withstand	8.3.4.3
Verification of temperature-rise	8.3.4.4
Verification of overload releases	8.3.4.5

For the case where $I_{cs} = I_{cu}$, see 8.3.5.

The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10.

8.3.4.1 Test of rated service short-circuit breaking capacity

A short-circuit test is made under the general conditions of 8.3.2, with a value of prospective current l_{cs} , as declared by the manufacturer, in accordance with 4.3.5.2.2.

The power factor for this test shall be according to table 11, for the appropriate test current.

The sequence of operations shall be:

$$O-t-CO-t-CO$$

In the case of integrally fused circuit-breakers, any blown fuse shall be replaced after each operation. The time interval t may need to be extended for this purpose.

8.3.4.2 Vérification de l'aptitude au fonctionnement

Après l'essai selon 8.3.4.1, l'aptitude au fonctionnement doit être vérifiée selon 8.3.3.3.4 sauf que cette vérification doit être effectuée à la même tension assignée de fonctionnement utilisée pour l'essai de 8.3.4.1 et que le nombre de manoeuvres doit être égal à 5 % du nombre donné dans la colonne 4 du tableau 8.

Cette vérification n'a pas besoin d'être faite lorsque, pour une taille donnée, l'essai de 8.3.4.1 a été effectué sur un disjoncteur avec un I_n minimal ou avec un réglage minimal du déclencheur de surcharge comme spécifié au tableau 10.

8.3.4.3 Vérification de la tenue diélectrique

Après l'essai de 8.3.4.2, la tenue diélectrique doit être vérifiée conformément à 8.3.3.5.

Pour les disjoncteurs aptes au sectionnement, le courant de fuite doit être mesuré selon 8.3.3.5.

8.3.4.4 Vérification de l'échauffement

Après l'essai de 8.3.4.3, l'échauffement aux bornes doit être vérifié conformément à 8.3.2.5. L'échauffement ne doit pas dépasser les valeurs données au tableau 7.

Il n'est pas nécessaire d'effectuer cette vérification lorsque, pour une taille donnée, l'essai de 8.3.4.1 a été effectué sur un disjoncteur avec $I_{\rm n}$ minimal ou au réglage minimal du déclencheur de surcharge.

8.3.4.5 Vérification des déclencheurs de surcharge

Immédiatement après l'essai de 8.3.4.4, le fonctionnement des déclencheurs de surcharge doit être vérifié conformément à 8.3.3.7.

NOTE Avec l'accord du constructeur, on peut admettre un délai entre les essais de 8.3.4.4 et 8.3.4.5.

8.3.5 Séquence d'essais III: Pouvoir assigné de coupure ultime en court-circuit

Sauf dans les cas où s'applique la séquence d'essais combinée (voir 8.3.8), cette séquence d'essais s'applique aux disjoncteurs de catégorie d'emploi A et à ceux de catégorie d'emploi B dont le pouvoir assigné de coupure ultime en court-circuit est supérieur au courant assigné de courte durée admissible.

NOTE Pour ce type de disjoncteurs de catégorie d'emploi B, le déclencheur instantané fonctionne à des valeurs de courant supérieures à celles de la deuxième colonne du tableau 3 (4.3.5.4); ce type de déclencheur peut être appelé «commande instantanée».

Il n'est pas nécessaire d'effectuer cette séquence d'essais sur les disjoncteurs de catégorie B dont le courant assigné de courte durée admissible est égal au pouvoir assigné de coupure ultime en court-circuit, car, dans ce cas, le pouvoir de coupure ultime en court-circuit est vérifié au cours de la séquence d'essais IV.

Pour les disjoncteurs à fusibles incorporés, la séquence d'essais V s'applique à la place de cette séquence.

Lorsque $I_{cs} = I_{cu}$, cette séquence n'a pas besoin d'être faite, et dans ce cas les vérifications suivantes doivent être faites en plus dans la séquence d'essais II

- vérification de 8.3.5.1 au début de la séquence d'essais;
- vérification de 8.3.5.4 à la fin de la séquence d'essais.

8.3.4.2 Verification of operational capability

Following the test according to 8.3.4.1, the operational capability shall be verified in accordance with 8.3.3.3.4 except that this verification shall be made at the same rated operational voltage as used for the test of 8.3.4.1, and that the number of operations shall be 5 % of the number given in column 4 of table 8.

This verification need not be made where, for a given frame size, the test of 8.3.4.1 has been made on a circuit-breaker of minimum I_n or at the minimum overload release setting as specified in table 10.

8.3.4.3 Verification of dielectric withstand

Following the test according to 8.3.4.2, the dielectric withstand shall be verified according to 8.3.3.5.

For circuit-breakers suitable for isolation, the leakage current shall be measured in accordance with 8.3.3.5.

8.3.4.4 Verification of temperature-rise

Following the test according to 8.3.4.3, the temperature-rise at the terminal shall be verified in accordance with 8.3.2.5. The temperature-rise shall not exceed the values given in table 7.

This verification need not be made where, for a given frame size, the test of 8.3.4.1 has been made on a circuit-breaker of minimum I_0 or at the minimum overload release setting.

8.3.4.5 Verification of overload releases

Immediately following the test according to 8.3.4.4, the operation of overload releases shall be verified in accordance with 8.3.3.7.

NOTE With the manufacturer's consent, a time interval between the tests of 8.3.4.4 and 8.3.4.5 may occur.

8.3.5 Test sequence III: Rated ultimate short-circuit breaking capacity

Except where the combined test sequence applies (see 8.3.8), this test sequence applies to circuit-breakers of utilization category A and to circuit-breakers of utilization category B having a rated ultimate short-circuit breaking capacity higher than the rated short-time withstand current.

NOTE For this type of utilization category B circuit-breaker, the instantaneous release operates at values of current in excess of those stated in column 2 of table 3 (4.3.5.4); this type of release may be referred to as "instantaneous override".

For circuit-breakers of utilization category B having a rated short-time withstand current equal to their rated ultimate short-circuit breaking capacity, this test sequence need not be made, since, in this case, the ultimate short-circuit breaking capacity is verified when carrying out test sequence IV.

For integrally fused circuit-breakers, test sequence V applies in place of this sequence.

Where $I_{cs} = I_{cu}$, this test sequence need not be made, in which case the following verifications shall be additionally made in test sequence II:

- the verification of 8.3.5.1, at the beginning of the test sequence
- the verification of 8.3.5.4, at the end of the test sequence.

60947-2 © CEI:1995+A1:1997

+A2:2001

Cette séquence d'essais comprend les essais suivants:

Essai	Paragraphe
Vérification des déclenchements de surcharge	8.3.5.1
Pouvoir assigné de coupure ultime en court-circuit	8.3.5.2
Vérification de la tenue diélectrique	8.3.5.3
Vérification des déclencheurs de surcharge	8.3.5.4

Le nombre d'échantillons à essayer et le réglage des déclencheurs réglables doivent être conformes au tableau 10.

8.3.5.1 Vérification des déclencheurs de surcharge

Le fonctionnement des déclencheurs de surcharge doit être vérifié à deux fois la valeur de leur courant de réglage sur chaque pôle séparément. Cet essai peut être effectué sous toute tension convenable.

NOTE 1 Si la température ambiante est différente de la température de référence, il convient de modifier la valeur du courant d'essai conformément aux caractéristiques température/courant fournies par le constructeur pour les déclencheurs sensibles à la température ambiante.

NOTE 2 Les essais pour lesquels la caractéristique de déclenchement est indépendante de la température des bornes (par exemple les déclencheurs électroniques de surcharge, les déclencheurs magnétiques), les données relatives au raccordement (type, section, longueur) peuvent être différentes de celles requises en 8.3.3.3.4 de la CEI 60947-1. Il convient que les raccordements soient compatibles avec le courant d'essai et les contraintes thermiques induites.

La durée de fonctionnement ne doit pas dépasser la valeur maximale fixée par le constructeur pour le double du courant de réglage à la température de référence, sur un pôle séparément.

8.3.5.2 Essai de pouvoir assigné de coupure ultime en court-circuit

Après l'essai de 8.3.5.1, un essai de pouvoir de coupure en court-circuit est effectué avec un courant présumé de valeur égale au pouvoir assigné de coupure ultime en court-circuit déclaré par le constructeur, dans les conditions générales conformes à celles de 8.3.2.

La séquence de manoeuvres doit être:

$$O - t - CO$$

8.3.5.3 Vérification de la tenue diélectrique

Après l'essai de 8.3.5.2, des essais doivent être effectués pour vérifier que le disjoncteur peut supporter, sans entretien, une tension égale à deux fois sa tension assignée correspondante d'emploi $U_{\rm e}$ avec un minimum de 1 000 V, selon 8.3.3.2.2, point a).

Pour les disjoncteurs aptes au sectionnement, le courant de fuite doit être mesuré en accord avec 8.3.3.2 sauf que le courant de fuite ne doit pas dépasser 6 mA.

8.3.5.4 Vérification des déclencheurs de surcharge

Après l'essai de 8.3.5.3, le fonctionnement des déclencheurs de surcharge doit être vérifié conformément au 8.3.5.1, sauf que le courant d'essai doit avoir une valeur égale à 2,5 fois celle de leur courant de réglage.

La durée de fonctionnement ne doit pas excéder la valeur maximale fixée par le constructeur pour le double de la valeur du courant de réglage, à la température de référence, sur un pôle séparément.

This test sequence comprises the following tests:

Test	Subclause
Verification of overload releases	8.3.5.1
Rated ultimate short-circuit breaking capacity	8.3.5.2
Verification of dielectric withstand	8.3.5.3
Verification of overload releases	8.3.5.4

The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10.

8.3.5.1 Verification of overload releases

The operation of overload releases shall be verified at twice the value of their current setting on each pole separately. This test may be made at any convenient voltage.

NOTE 1 If the ambient temperature differs from the reference temperature, the test current should be corrected in accordance with the manufacturer's temperature/current data, for releases dependent on ambient temperature.

NOTE 2 For tests for which the tripping characteristic is independent of the temperature of the terminals (e.g. electronic overload releases, magnetic releases), connection data (type, cross-section, length) may be different from those required in 8.3.3.3.4 of IEC 60947-1. The connections should be compatible with the test current and induced thermal stresses.

The operating time shall not exceed the maximum value stated by the manufacturer for twice the current setting at the reference temperature, on a pole singly.

8.3.5.2 Test of rated ultimate short-circuit breaking capacity

Following the test according to 8.3.5.1, a short-circuit breaking capacity test is made with a value of prospective current equal to the ultimate rated short-circuit breaking capacity as declared by the manufacturer, under the general conditions according to 8.3.2.

The sequence of operations shall be:

$$O - t - CO$$

8.3.5.3 Verification of dielectric withstand

Following the test according to 8.3.5.2, tests shall be made to verify that the circuit-breaker shall be capable, without maintenance, of withstanding a voltage equal to twice the corresponding rated operational voltage $U_{\rm e}$, with a minimum of 1 000 V, according to 8.3.3.2.2, item a).

For circuit-breakers suitable for isolation, the leakage current shall be measured in accordance with 8.3.3.2, except that the leakage current shall not exceed 6 mA.

8.3.5.4 Verification of overload releases

Following the test according to 8.3.5.3, the operation of overload releases shall be verified in accordance with 8.3.5.1, except that the test current shall be 2,5 times the value of their current setting.

The operating time shall not exceed the maximum value stated by the manufacturer for twice the value of the current setting, at the reference temperature, on a pole singly.

8.3.6 Séquence d'essais IV: Courant assigné de courte durée admissible

Sauf lorsque la séquence d'essais combinée s'applique (voir 8.3.8), cette séquence d'essais s'applique aux disjoncteurs de la catégorie d'emploi B et de la catégorie d'emploi A couverte par la note 3 du tableau 4; elle comprend les essais suivants.

Essai	Paragraphe
Vérification des déclenchements de surcharge	8.3.6.1
Courant assigné de courte durée admissible	8.3.6.2
Vérification de l'échauffement	8.3.6.3
Pouvoir de coupure en court-circuit au courant maximal de courte durée admissible	8.3.6.4
Vérification de la tenue diélectrique	8.3.6.5
Vérification des déclencheurs de surcharge	8.3.6.6

Les disjoncteurs à fusibles incorporés de catégorie d'emploi B doivent satisfaire aux prescriptions de cette séquence.

Le nombre d'échantillons à essayer et le réglage des déclencheurs réglables doivent être conformes au tableau 10.

8.3.6.1 Vérification des déclencheurs de surcharge

Le fonctionnement des déclencheurs de surcharge doit être vérifié conformément au 8.3.5.1.

8.3.6.2 Essai du courant assigné de courte durée admissible

Le 8.3.4.3 de la première partie est applicable, avec le complément suivant:

Pour les besoin de cet essai seulement, tout déclencheur à maximum de courant, y compris la commande instantanée, s'il y a lieu, susceptible de fonctionner au cours de l'essai, doit être rendu inopérant.

8.3.6.3 Vérification de l'échauffement

Après l'essai de 8.3.6.2, l'échauffement aux bornes doit être vérifié conformément au 8.3.2.5.

L'échauffement ne doit pas dépasser la valeur donnée au tableau 7.

8.3.6.4 Essai de pouvoir de coupure en court-circuit au courant maximal de courte durée admissible

Après l'essai de 8.3.6.3, un essai en court-circuit doit être effectué avec la séquence de manoeuvres suivante:

$$O - t - CO$$

dans les conditions générales de 8.3.2, avec un courant présumé de valeur égale à celle de l'essai de tenue au courant de courte durée admissible (voir 8.3.6.2) et sous la tension la plus élevée applicable au courant assigné de courte durée admissible.

Le disjoncteur doit rester fermé pendant la courte durée associée à la durée maximale de réglage possible du déclencheur de court-circuit de courte durée, et la commande instantanée, le cas échéant, ne doit pas fonctionner. Si le disjoncteur a un déclencheur sous courant de fermeture (voir 2.10) cette prescription ne s'applique pas à la manoeuvre CO si le courant présumé dépasse la valeur prédéterminée puisqu'il va fonctionner.

8.3.6 Test sequence IV: Rated short-time withstand current

Except where the combined test sequence applies (see 8.3.8), this test sequence applies to circuit-breakers of utilization category B and to those circuit-breakers of category A covered by note 3 of table 4; it comprises the following tests.

Test	Subclause
Verification of overload releases	8.3.6.1
Rated short-time withstand current	8.3.6.2
Verification of temperature-rise	8.3.6.3
Short-circuit breaking capacity at maximum short-time withstand current	8.3.6.4
Verification of dielectric withstand	8.3.6.5
Verification of overload releases	8.3.6.6

Where integrally fused circuit-breakers are of utilization category B, they shall meet the requirements of this sequence.

The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10.

8.3.6.1 Verification of overload releases

The operation of overload releases shall be verified in accordance with 8.3.5.1.

8.3.6.2 Test of rated short-time withstand current

Subclause 8.3.4.3 of Part 1 applies with the following addition:

For the purpose of this test only, any over-current release, including the instantaneous override, if any, likely to operate during the test, shall be rendered inoperative.

8.3.6.3 Verification of temperature-rise

Following the test according to 8.3.6.2, the temperature-rise at the terminals shall be verified according to 8.3.2.5. The temperature-rise shall not exceed the value given in table 7.

8.3.6.4 Test of short-circuit breaking capacity at the maximum short-time withstand current

Following the test according to 8.3.6.3, a short-circuit test shall be made with the following sequence of operations:

$$O - t - CO$$

under the general conditions of 8.3.2, with a value of prospective current equal to that of the short-time withstand current test (see 8.3.6.2) and at the highest voltage applicable to the rated short-time withstand current.

The circuit-breaker shall remain closed for the short-time corresponding to the maximum available time setting of the short-time delay short-circuit release, and the instantaneous override, if any, shall not operate. If the circuit-breaker has a making current release (see 2.10), this requirement does not apply to the CO operation, if the prospective current exceeds the pre-determined value, since it will then operate.

8.3.6.5 Vérification de la tenue diélectrique

Après l'essai de 8.3.6.4, la tenue diélectrique doit être vérifiée conformément au 8.3.3.5.

8.3.6.6 Vérification des déclencheurs de surcharge

Après l'essai de 8.3.6.5, le fonctionnement des déclencheurs de surcharge doit être vérifié conformément au 8.3.5.1.

8.3.7 Séquence d'essais V: Fonctionnement des disjoncteurs à fusibles incorporés

Cette séquence d'essais s'applique aux disjoncteurs à fusibles incorporés. Elle remplace la séquence d'essais III et comprend les essais suivants:

	Essai	Paragraphe
	Court-circuit au courant limite de sélectivité	8.3.7.1
Phase 1	Vérification de l'échauffement	8.3.7.2
	Vérification de la tenue diélectrique	8.3.7.3
	Vérification des déclencheurs de surcharge	8.3.7.4
	Court-circuit à 1,1 fois le courant d'intersection	8.3.7.5
Phase 2	Court-circuit au pouvoir assigné de coupure ultime en court-circuit	8.3.7.6
	Vérification de la tenue diélectrique	8.3.7.7
	Vérification des déclencheurs de surcharge	8.3.7.8

Cette séquence d'essais est divisée en deux phases:

- la phase 1 comprend les essais des 8.3.7.1 à 8.3.7.3;
- la phase 2 comprend les essais des 8.3.7.4 à 8.3.7.8.

Ces deux phases peuvent être effectuées:

- sur deux disjoncteurs distincts, ou
- sur le même disjoncteur, avec des opérations d'entretien entre elles, ou
- sur le même disjoncteur sans aucun entretien; dans ce cas, l'essai de 8.3.7.3 peut ne pas être effectué.

L'essai de 8.3.7.2 n'est nécessaire que si I_{cs} est supérieur à I_{s} .

Les essais des 8.3.7.1, 8.3.7.5 et 8.3.7.6 doivent être effectués à la tension maximale d'emploi du disjoncteur.

Le nombre d'échantillons à essayer et le réglage des déclencheurs réglables doivent être conformes au tableau 10.

8.3.7.1 Court-circuit au courant limite de sélectivité

Un essai de court-circuit est effectué dans les conditions générales de 8.3.2, avec un courant présumé de valeur égale à celle du courant limite de sélectivité déclarée par le constructeur (voir 2.17.4).

Pour cet essai, les fusibles appropriés doivent être en place.

Cet essai doit consister en une manoeuvre «O» à l'issue de laquelle les fusibles doivent demeurer intacts.

8.3.6.5 Verification of dielectric withstand

Following the test carried out according to 8.3.6.4, the dielectric withstand shall be verified according to 8.3.3.5.

8.3.6.6 Verification of overload releases

Following the test according to 8.3.6.5, the operation of overload releases shall be verified according to 8.3.5.1.

8.3.7 Test sequence V: Performance of integrally fused circuit-breakers

This test sequence applies to integrally fused circuit-breakers. It replaces test sequence III and comprises the following tests:

	Test	Subclause
	Short-circuit at the selectivity limit current	8.3.7.1
Stage 1	Verification of temperature-rise	8.3.7.2
	Verification of dielectric withstand	8.3.7.3
	Verification of overload releases	8.3.7.4
	Short-circuit at 1,1 times take-over current	8.3.7.5
Stage 2	Short-circuit at ultimate short-circuit breaking capacity	8.3.7.6
	Verification of dielectric withstand	8.3.7.7
	Verification of overload releases	8.3.7.8

This test sequence is divided into two stages:

- Stage 1 comprises the tests according to 8.3.7.1 to 8.3.7.3;
- Stage 2 comprises the tests according to 8.3.7.4 to 8.3.7.8.

The two stages may be carried out:

- on two separate circuit-breakers, or
- on the same circuit-breaker, with maintenance between them, or
- on the same circuit-breaker, without any maintenance, in which case the test according to 8.3.7.3 may be omitted.

The test according to 8.3.7.2 need only be made if $I_{cs} > I_{s}$.

Tests according to 8.3.7.1, 8.3.7.5 and 8.3.7.6 shall be made at the maximum operational voltage of the circuit-breaker.

The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10.

8.3.7.1 Short-circuit at the selectivity limit current

A short-circuit test is made under the general conditions of 8.3.2, with a value of prospective current equal to the selectivity limit current, as declared by the manufacturer (see 2.17.4).

For the purpose of this test the fuses shall be fitted.

The test shall consist of one O operation at the conclusion of which the fuses shall still be intact.

8.3.7.2 Vérification de l'échauffement

NOTE Cette vérification de l'échauffement est effectuée, car les fusibles peuvent avoir fondu au cours de l'essai de court-circuit de la séquence d'essais II, 8.3.4.1, auquel cas l'essai de 8.3.7.1 est plus sévère.

Après l'essai selon 8.3.7.1, l'échauffement aux bornes doit être vérifié conformément au 8.3.2.5.

L'échauffement ne doit pas dépasser la valeur indiquée au tableau 7.

8.3.7.3 Vérification de la tenue diélectrique

Après l'essai selon 8.3.7.2, la tenue diélectrique doit être vérifiée conformément au 8.3.3.5.

8.3.7.4 Vérification des déclencheurs de surcharge

Le fonctionnement des déclencheurs de surcharge doit être vérifié conformément au 8.3.5.1.

8.3.7.5 Court-circuit à 1,1 fois le courant d'intersection

Après l'essai selon 8.3.7.4, un essai de court-circuit est effectué dans les mêmes conditions générales que celles de 8.3.7.1, avec un courant présumé de valeur égale à 1,1 fois celle du courant d'intersection déclarée par le constructeur (voir 2.17.6).

Pour cet essai, les fusibles appropriés doivent être en place.

Cet essai doit consister en une manoeuvre «O», à l'issue de laquelle au moins deux des fusibles doivent avoir fondu.

8.3.7.6 Court-circuit au pouvoir de coupure ultime en court-circuit

Après l'essai de 8.3.7.5, un essai de court-circuit doit être effectué dans les mêmes conditions générales qu'au 8.3.7.1, avec un courant présumé de valeur égale au pouvoir de coupure ultime en court-circuit I_{cu} déclaré par le constructeur.

Pour cet essai, un nouveau jeu de fusibles doit être mis en place.

La séquence de manoeuvres doit être:

$$O - t - CO$$

un autre nouveau jeu de fusibles étant mis en place au cours de l'intervalle de temps t, qui peut être allongé pour cette raison.

8.3.7.7 Vérification de la tenue diélectrique

Après l'essai selon 8.3.7.6 et avec un nouveau jeu de fusibles adaptés, la tenue diélectrique doit être vérifiée selon 8.3.5.3.

8.3.7.8 Vérification des déclencheurs de surcharge

Après l'essai selon 8.3.7.7, le fonctionnement des déclencheurs de surcharge doit être vérifié conformément au 8.3.5.1, mais avec un courant d'essai de valeur égale à 2,5 fois celle de leur courant de réglage.

La durée de fonctionnement ne doit pas excéder la valeur maximale fixée par le constructeur pour le double de la valeur du courant de réglage, à la température de référence, sur un pôle séparément.

8.3.7.2 Verification of temperature-rise

NOTE This verification of temperature-rise is made since the fuses may have blown during the short-circuit test of test sequence II, 8.3.4.1, in which case the test of 8.3.7.1 is more severe.

Following the test according to 8.3.7.1 the temperature-rise at the terminals shall be verified, in accordance with 8.3.2.5.

The temperature-rise shall not exceed the value given in table 7.

8.3.7.3 Verification of dielectric withstand

Following the test according to 8.3.7.2 the dielectric withstand shall be verified according to 8.3.3.5.

8.3.7.4 Verification of overload releases

The operation of overload releases shall be verified in accordance with 8.3.5.1.

8.3.7.5 Short-circuit at 1,1 times the take-over current

Following the test according to 8.3.7.4 a short-circuit test is made under the same general conditions as in 8.3.7.1, with a value of prospective current equal to 1,1 times the take-over current declared by the manufacturer (see 2.17.6).

For the purpose of this test the fuses shall be fitted.

The test shall consist of one "O" operation at the conclusion of which at least two of the fuses shall have blown.

8.3.7.6 Short-circuit at ultimate short-circuit breaking capacity

Following the test according to 8.3.7.5, a short-circuit test is made under the same general conditions as in 8.3.7.1, with a value of prospective current equal to the ultimate short-circuit breaking capacity I_{cu} , as declared by the manufacturer.

For the purpose of this test, a new set of fuses shall be fitted.

The sequence of operations shall be:

$$O - t - CO$$

a further new set of fuses being fitted during the time interval t, which may need to be extended for that purpose.

8.3.7.7 Verification of dielectric withstand

Following the test according to 8.3.7.6 and with a new set of fuses fitted, the dielectric withstand shall be verified according to 8.3.5.3.

8.3.7.8 Verification of overload releases

Following the test according to 8.3.7.7, the operation of overload releases shall be verified in accordance with 8.3.5.1 except that the test current shall be 2,5 times the value of their current setting.

The operating time shall not exceed the maximum value stated by the manufacturer for twice the value of the current setting, at the reference temperature, on a pole singly.

8.3.8 Séquence d'essais combinée

A la discrétion du constructeur ou en accord avec celui-ci, cette séquence d'essais peut s'appliquer aux disjoncteurs de catégorie d'emploi B:

- a) lorsque le courant assigné de courte durée admissible et le pouvoir assigné de coupure de service en court-circuit ont la même valeur ($l_{cw} = l_{cs}$); dans ce cas, elle remplace les séquences d'essais II et IV;
- b) lorsque le courant assigné de courte durée admissible, le pouvoir assigné de coupure de service en court-circuit et le pouvoir assigné de coupure ultime en court-circuit ont la même valeur ($I_{cw} = I_{cs} = I_{cu}$); dans ce cas, elle remplace les séquences d'essais II, III et IV.

Cette séquence d'essais comprend les essais suivants:

Essai	Paragraphe
Vérification des déclencheurs de surcharge	8.3.8.1
Courant assigné de courte durée admissible	8.3.8.2
Pouvoir assigné de coupure de service en court-circuit*	8.3.8.3
Vérification de l'aptitude au fonctionnement	8.3.8.4
Vérification de la tenue diélectrique	8.3.8.5
Vérification de l'échauffement	8.3.8.6
Vérification des déclencheurs de surcharge	8.3.8.7
* Pour les disjoncteurs répondant au cas du point b également le pouvoir assigné de coupure ultime en coup	-

Le nombre d'échantillons à essayer et le réglage des déclencheurs réglables doivent être conformes au tableau 10.

8.3.8.1 Vérification des déclencheurs de surcharge

Le fonctionnement des déclencheurs de surcharge doit être vérifié conformément au 8.3.5.1.

8.3.8.2 Essai du courant assigné de courte durée admissible

Après l'essai selon 8.3.8.1, un essai doit être effectué au courant assigné de courte durée admissible conformément au 8.3.6.2.

8.3.8.3 Essai du pouvoir assigné de coupure de service en court-circuit

Après l'essai selon 8.3.8.2, un essai doit être effectué au pouvoir assigné de coupure de service en court-circuit, conformément au 8.3.4.1, à la tension la plus élevée applicable au courant assigné de court-circuit admissible. Le disjoncteur doit rester fermé pendant la courte durée correspondant à la durée maximale de réglage possible du déclencheur de court-circuit de courte durée.

Au cours de cet essai, la commande instantanée (le cas échéant) ne doit pas fonctionner et le déclencheur sous courant de fermeture (le cas échéant) doit fonctionner.

8.3.8 Combined test sequence

At the discretion of, or in agreement with the manufacturer, this test sequence may be applied to circuit-breakers of utilization category B:

- a) when the rated short-time withstand current and the rated service short-circuit breaking capacity have the same value ($I_{cw} = I_{cs}$); in this case it replaces test sequences II and IV;
- b) when the rated short-time withstand current, the rated service short-circuit breaking capacity and the rated ultimate short-circuit breaking capacity have the same value ($I_{cw} = I_{cs} = I_{cu}$); in this case it replaces test sequences II, III and IV.

This test sequence comprises the following tests:

Test	Subclauses
Verification of overload releases	8.3.8.1
Rated short-time withstand current	8.3.8.2
Rated service short-circuit breaking capacity*	8.3.8.3
Verification of operational capability	8.3.8.4
Verification of dielectric withstand	8.3.8.5
Verification of temperature-rise	8.3.8.6
Verification of overload releases	8.3.8.7
* For circuit-breakers falling into the case of item b) rated ultimate short-circuit breaking capacity.	above, this is also the

The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10.

8.3.8.1 Verification of overload releases

The operation of overload releases shall be verified in accordance with 8.3.5.1.

8.3.8.2 Test of rated short-time withstand current

Following the test according to 8.3.8.1, a test shall be made at the rated short-time withstand current according to 8.3.6.2.

8.3.8.3 Test of rated service short-circuit breaking capacity

Following the test according to 8.3.8.2, a test shall be made at the rated service short-circuit breaking capacity according to 8.3.4.1, at the highest voltage applicable to the rated short-time withstand current. The circuit-breaker shall remain closed for the short-time corresponding to the maximum available time setting of the short-time delay short-circuit release.

During this test the instantaneous override (if any) shall not operate, and the making current release (if any) shall operate.

8.3.8.4 Vérification de l'aptitude au fonctionnement

Après l'essai selon 8.3.8.3, l'aptitude au fonctionnement doit être vérifiée selon 8.3.4.2.

8.3.8.5 Vérification de la tenue diélectrique

Après l'essai selon 8.3.8.4, la tenue diélectrique doit être vérifiée conformément à 8.3.3.5.

Pour les disjoncteurs aptes au sectionnement, le courant de fuite doit être mesuré selon 8.3.3.5.

8.3.8.6 Vérification de l'échauffement

Après l'essai selon 8.3.8.5, l'échauffement aux bornes doit être vérifié conformément à 8.3.2.5.

L'échauffement ne doit pas dépasser la valeur indiquée au tableau 7.

Il n'est pas nécessaire d'effectuer cette vérification lorsque, pour une taille donnée, l'essai de 8.3.8.3 a été effectué sur un disjoncteur avec $I_{\rm n}$ minimal ou au réglage minimal du déclencheur de surcharge.

8.3.8.7 Vérification des déclencheurs de surcharge

Après refroidissement suivant l'essai de 8.3.8.6, le fonctionnement des déclencheurs de surcharge doit être vérifié conformément à 8.3.3.7.

Le fonctionnement des déclencheurs de surcharge doit ensuite être vérifié sur chaque pôle individuellement selon 8.3.5.1, sauf que le courant d'essai doit être égal à 2,5 fois la valeur de leur courant de réglage.

Le temps de fonctionnement ne doit pas dépasser la valeur maximale déclarée par le constructeur pour deux fois la valeur du courant à la température de référence pour un pôle seul.

8.3.9 Essais d'immunité pour les disjoncteurs comprenant des circuits électroniques, autres que les disjoncteurs de l'annexe B et de l'annexe F

Le paragraphe 8.4 de la partie 1 s'applique.

Les méthodes d'essais et les critères de fonctionnement pour les disjoncteurs comprenant des circuits électroniques autres que les disjoncteurs couverts par l'annexe B (DPR) et l'annexe F (protection de surintensité électronique) sont à l'étude.

8.4 Essais individuels

Pour la définition des essais individuels, voir 2.6.2 et 8.1.3 de la partie 1.

Les essais suivants sont applicables:

- fonctionnement mécanique (8.4.1);
- vérification de l'étalonnage des déclencheurs de surintensité (8.4.2);
- vérification du fonctionnement des déclencheurs à minimum de tension et des déclencheurs shunt (8.4.3);
- essais supplémentaires pour les DPR selon l'annexe B (8.4.4);

8.3.8.4 Verification of operational capability

Following the test according to 8.3.8.3, the operational capability shall be verified in accordance with 8.3.4.2.

8.3.8.5 Verification of dielectric withstand

Following the test according to 8.3.8.4, the dielectric withstand shall be verified according to 8.3.3.5.

For circuit-breakers suitable for isolation, the leakage current shall be measured according to 8.3.3.5.

8.3.8.6 Verification of temperature-rise

Following the test according to 8.3.8.5, the temperature-rise at the terminals shall be verified in accordance with 8.3.2.5.

The temperature-rise shall not exceed the value given in table 7.

This verification need not be made where, for a given frame size, the test of 8.3.8.3 has been made on a circuit-breaker of minimum I_n or at the minimum overload release setting.

8.3.8.7 Verification of overload releases

After cooling down following the test according to 8.3.8.6, the operation of overload releases shall be verified in accordance with 8.3.3.7.

Thereafter, the operation of the overload releases shall be verified on each pole individually in accordance with 8.3.5.1, except that the test current shall be 2,5 times the value of their current setting.

The operating time shall not exceed the maximum value stated by the manufacturer for twice the value of the current setting, at the reference temperature, on a pole singly.

8.3.9 Immunity tests for circuit-breakers incorporating electronic circuits, other than circuit-breakers according to annex B and annex F

Subclause 8.4 of part 1 applies.

Test methods and performance criteria for circuit-breakers incorporating electronic circuits other than circuit-breakers covered by annex B (CBR) and annex F (electronic overcurrent protection) are under consideration.

8.4 Routine tests

For the definition of routine tests, see 2.6.2 and 8.1.3 of part 1.

The following tests apply:

- mechanical operation (8.4.1);
- verification of the calibration of overcurrent releases (8.4.2);
- verification of the operation of undervoltage and shunt releases (8.4.3);
- additional tests for CBRs to annex B (8.4.4);

- essais diélectriques (voir note) (8.4.5);
- vérification des distances d'isolement (8.4.6).

NOTE Si, par le contrôle des matériaux et des procédés de fabrication, l'intégrité des propriétés diélectriques a été prouvée, ces essais peuvent être remplacés par des essais sur prélèvement selon le plan d'échantillonnage reconnu (voir CEI 60410).

Cependant, le fonctionnement du disjoncteur pendant la fabrication et/ou un autre essai individuel peut prendre la place des essais cités ci-dessus pourvu que les mêmes conditions soient applicables et que le nombre de manoeuvres ne soit pas inférieur à celui spécifié.

Dans le contexte de ces essais de 8.4.1, 8.4.2, 8.4.3, 8.4.5 et 8.4.6 le terme «disjoncteur» couvre un DPR le cas échéant.

8.4.1 Essais de fonctionnement mécanique

Les essais de 8.4.1.1 et 8.4.1.2 doivent être effectués sans courant dans le circuit principal, sauf si cela est requis pour le fonctionnement des déclencheurs. Pendant les essais, aucun réglage ne doit être fait et le fonctionnement doit être satisfaisant.

- 8.4.1.1 Les essais suivants doivent être effectués sur les disjoncteurs manoeuvrés manuellement:
- deux manoeuvres de fermeture-ouverture;
- deux manoeuvres à déclenchement libre.

NOTE Pour la définition d'un dispositif de commutation à déclenchement mécanique libre, voir 2.4.23 de la partie 1.

- **8.4.1.2** Les essais suivants doivent être effectués sur les disjoncteurs alimentés à 110 % de la tension d'alimentation assignée maximale de commande et/ou de la pression d'alimentation assignée et à 85 % de la tension d'alimentation assignée minimale de commande et/ou de la pression d'alimentation assignée:
- deux manoeuvres de fermeture-ouverture;
- deux manoeuvres à déclenchement libre;
- pour les disjoncteurs à refermeture automatique, deux manoeuvres de refermeture automatique.

8.4.2 Vérification de l'étalonnage des déclencheurs de surintensité

8.4.2.1 Déclencheurs à temps inverse

La vérification de l'étalonnage des déclencheurs à temps inverse doit être faite à un multiple du courant de réglage pour vérifier que le temps de déclenchement est conforme (avec des tolérances) à la courbe fournie par le constructeur.

Cette vérification peut être faite à toute température convenable, une correction devant être faite pour toute différence de température par rapport à la température de référence (voir 4.7.3).

8.4.2.2 Déclencheurs instantanés et à retard indépendant

La vérification de l'étalonnage des déclencheurs instantanés et à retard indépendant doit permettre de s'assurer du non-fonctionnement et du fonctionnement des déclencheurs aux valeurs de courant données en 8.3.3.1.2 ou 8.3.3.1.3, point a), selon le cas, aucune mesure du temps de coupure n'étant requise.

Les essais peuvent être effectués en alimentant deux pôles en série avec le courant d'essai, en utilisant toutes les combinaisons possibles de pôles équipés de déclencheurs ou en alimentant avec le courant d'essai chaque pôle ayant individuellement un déclencheur.

- dielectric tests (see note) (8.4.5);
- verification of clearances (8.4.6).

NOTE If by the control of materials and manufacturing processes, the integrity of the dielectric properties has been proven, these tests may be replaced by sampling tests according to a recognized sampling plan (see IEC 60410).

However, operation of the circuit-breaker during manufacture and/or other routine test may take the place of the tests listed above provided the same conditions apply and the number of operations is not less than that specified.

In the context of the tests of 8.4.1, 8.4.2, 8.4.3, 8.4.5 and 8.4.6, the term "circuit-breakers" covers CBRs, where applicable.

8.4.1 Mechanical operation tests

The tests of 8.4.1.1 and 8.4.1.2 shall be carried out without current in the main circuit, except when required for the operation of releases. During the tests, no adjustments shall be made and the operation shall be satisfactory.

8.4.1.1 The following tests shall be made on manually-operated circuit-breakers:

- two close-open operations;
- two trip-free operations.

NOTE For the definition of a trip-free mechanical switching device, see 2.4.23 of part 1.

- **8.4.1.2** The following tests shall be made on power-operated circuit-breakers at 110 % of the maximum rated control supply voltage and/or of the rated supply pressure, and at 85 % of the minimum rated control supply voltage and/or of the rated supply pressure:
- two close-open operations;
- two trip-free operations;
- for automatic reclosing circuit-breakers, two automatic reclosing operations.

8.4.2 Verification of the calibration of overcurrent releases

8.4.2.1 Inverse time-delay releases

The verification of the calibration of inverse time-delay releases shall be made at a multiple of the current setting to check that the tripping time conforms (within tolerances) to the curve provided by the manufacturer.

This verification may be made at any convenient temperature, correction being made for any difference from the reference temperature (see 4.7.3).

8.4.2.2 Instantaneous and definite time-delay releases

The verification of the calibration of instantaneous and definite time-delay releases shall check the non-operation and operation of the releases at the values of current given in 8.3.3.1.2 or 8.3.3.1.3, item a), as applicable, without measurement of break time being required.

The tests may be made by loading two poles in series with the test current, using all possible combinations of poles having releases, or by loading each pole having a release individually with the test current.

Une méthode pour déterminer le niveau de déclenchement consiste à appliquer un courant d'essai augmentant lentement partant d'une valeur en dessous de la limite inférieure jusqu'à ce que le déclenchement du disjoncteur survienne. Le déclenchement doit se produire entre les limites inférieure et supérieure du courant d'essai.

8.4.3 Vérification du fonctionnement des déclencheurs à minimum de tension et des déclencheurs shunt

Les essais de 8.4.3.1 et 8.4.3.2 doivent être effectués avec un déclencheur équipant un disjoncteur ou avec un matériel d'essai convenable simulant le fonctionnement mécanique du disjoncteur.

8.4.3.1 Déclencheurs à minimum de tension

Les essais doivent être faits afin de vérifier que le déclencheur fonctionne selon 7.2.1.3 de la partie 1 comme suit.

a) Tension de maintien

Le déclencheur doit fermer à une tension correspondant à 85 % de la tension d'alimentation minimale assignée de commande.

b) Tension de retombée

Le déclencheur doit ouvrir lorsque la tension est réduite à une valeur comprise dans la gamme correspondant à 70 % et 35 % de la tension d'alimentation de commande assignée, réglée afin de tenir compte de la nécessité de fonctionner dans les conditions spécifiées en 8.3.3.3.2, point c) i). Dans le cas de déclencheurs ayant une gamme de tensions d'alimentation assignées de commande la limite supérieure doit correspondre au minimum de la gamme et la limite inférieure au maximum de la gamme.

8.4.3.2 Déclencheurs shunt (pour l'ouverture)

Un essai doit être effectué afin de vérifier que le déclencheur va fonctionner en accord avec 7.2.1.4 de la partie 1. L'essai peut être effectué à toute température convenable pourvu que la tension d'essai soit réduite afin de tenir compte de la nécessité pour le déclencheur de fonctionner dans les conditions spécifiées en 8.3.3.3.2, point d). Dans le cas d'un déclencheur ayant une gamme de tensions assignées, la tension d'essai doit correspondre à 70 % de la tension d'alimentation minimale assignée de commande.

8.4.4 Essais supplémentaires pour les DPR

Les essais supplémentaires suivants doivent être faits sur les DPR ou les unités c.r.

a) Fonctionnement du dispositif d'essai

Le DPR doit être soumis à deux manoeuvres de fermeture-déclenchement ou, dans le cas d'unités c.r., à deux manoeuvres de réarmement-déclenchement, déclenchement par la manoeuvre manuelle du dispositif d'essai avec le DPR alimenté à la tension assignée la plus basse de fonctionnement.

b) Vérification de l'étalonnage du dispositif de déclenchement par courant résiduel du DPR

En utilisant un courant résiduel sinusoïdal alternatif, il doit être vérifié que

- le DPR ne déclenche pas avec un courant résiduel égal à 0,5 fois $I_{\Delta n}$ dans chaque pôle séparément, au réglage minimal de $I_{\Delta n}$ s'il est réglable;
- le DPR déclenche avec un courant résiduel $I_{\Delta n}$ dans chaque pôle séparément, au réglage minimal de $I_{\Delta n}$ s'il est réglable.

One method of determining the tripping level consists in applying a slowly rising test current, starting from a value below the lower limit until tripping of the circuit-breaker occurs. Tripping shall occur between the lower and upper limits of test current.

– 123 –

8.4.3 Verification of the operation of undervoltage and shunt releases

The tests of 8.4.3.1 and 8.4.3.2 shall be made with the release fitted to a circuit-breaker or to an appropriate test equipment simulating the mechanical operation of the circuit-breaker.

8.4.3.1 Undervoltage releases

Tests shall be made to verify that the release will operate in accordance with 7.2.1.3 of part 1 as follows:

a) Hold-in voltage

The release shall close on to a voltage corresponding to 85 % of the minimum rated control supply voltage.

b) Drop-out voltage

The release shall open when the voltage is reduced to a value within the range corresponding to the limits of 70 % and 35 % of the rated control supply voltage, adjusted to take account of the need to operate under the conditions specified in 8.3.3.3.2, item c) i). In the case of releases having a range of rated control supply voltages, the upper limit shall correspond to the minimum of the range and the lower limit to the maximum of the range.

8.4.3.2 Shunt releases (for opening)

A test shall be made to verify that the release will operate in accordance with 7.2.1.4 of part 1. The test may be made at any convenient temperature provided the test voltage is reduced to take account of the need for the release to operate under the conditions specified in 8.3.3.3.2, item d). In the case of a release having a range of rated control supply voltages, the test voltage shall be related to 70 % of the minimum rated control supply voltage.

8.4.4 Additional tests for CBRs

The following additional tests shall be made on CBRs or r.c. units.

a) Operation of the test device

The CBR shall be subjected to two close-trip operations or, in the case of r.c. units, to two reset-trip operations, tripping by the manual operation of the test device with the CBR supplied at the lowest rated operational voltage.

b) Verification of the calibration of the residual current tripping device of the CBR

Using an alternating sinusoidal residual current, it shall be verified that

- the CBR does not trip with a residual current of 0,5 times $I_{\Delta n}$ in each pole separately, at the minimum setting of $I_{\Delta n}$, if adjustable;
- the CBR trips with a residual current of $I_{\Delta n}$ in each pole separately, at the minimum setting of $I_{\Delta n}$, if adjustable.

8.4.5 Essais diélectriques

Les conditions d'essais doivent être en accord avec 8.3.3.2.1, sauf que l'usage d'une feuille métallique n'est pas requis. La durée de l'essai ne doit pas être inférieure à 1 s. La tension d'essai en accord avec 8.3.3.2.3 doit être appliquée comme suit:

- le disjoncteur étant en position d'ouverture, entre chaque paire de bornes qui sont électriquement raccordées lorsque le disjoncteur est fermé;
- pour les disjoncteurs ne comprenant pas de circuits électroniques raccordés aux pôles principaux, avec le disjoncteur en position de fermeture, entre chaque pôle et le ou les pôles adjacents et entre chaque pôle et le châssis, le cas échéant;
- pour les disjoncteurs comprenant des circuits électroniques raccordés aux pôles principaux, avec le disjoncteur en position d'ouverture, entre chaque pôle et le ou les pôles adjacents et entre chaque pôle et le châssis, le cas échéant, soit sur le côté entrée, soit sur le côté sortie selon la position des composants électroniques.

NOTE En variante, la déconnexion des circuits électroniques est permise pendant les essais diélectriques.

En variante aux essais à fréquence industrielle, un essai de résistance d'isolement à 500 V en courant continu peut être effectué entre les mêmes points sur le disjoncteur. En tout point, la résistance d'isolement ne doit pas être inférieure à $0.5 \,\mathrm{M}\Omega$.

8.4.6 Essai pour la vérification des distances d'isolement inférieures à celles correspondant au tableau 13, cas A, de la partie 1

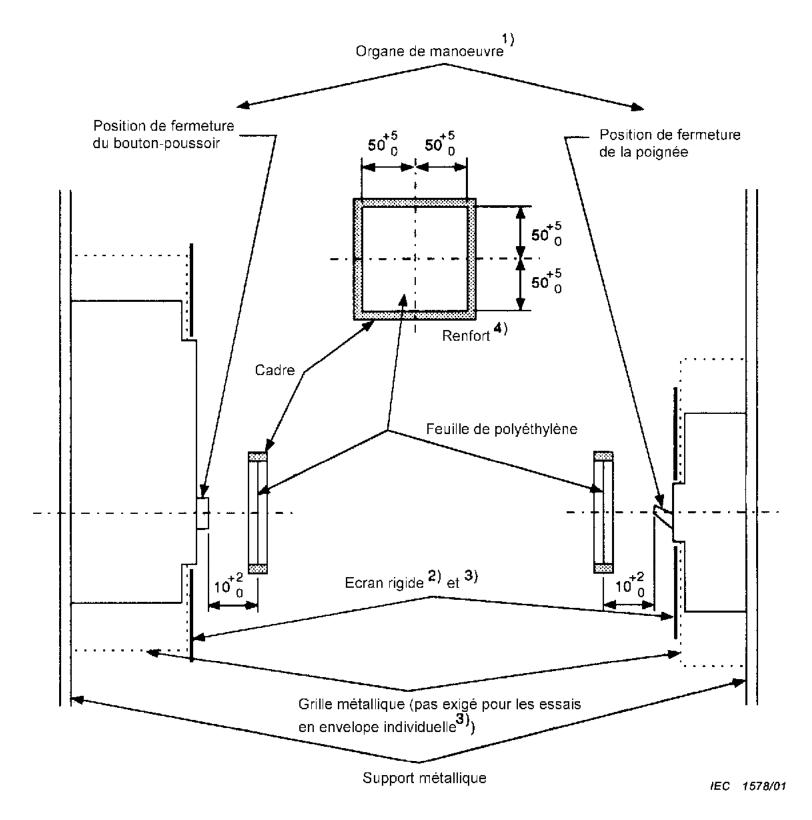
Le paragraphe 8.3.3.4.3 de la partie 1 s'applique sauf que, pour les besoins de cette norme, cet essai doit être un essai individuel.

Aucun essai n'est requis pour des distances d'isolement supérieures ou égales au cas A du tableau 13 de la partie 1.

8.4.5 Dielectric tests

The test conditions shall be in accordance with 8.3.3.2.1 except that the use of the metal foil is not required. The duration of the test shall be not less than 1 s. The test voltage shall be in accordance with 8.3.3.2.3 and shall be applied as follows:

- with the circuit-breaker in the open position, between each pair of terminals which are electrically connected together when the circuit-breaker is closed;
- for circuit-breakers not incorporating electronic circuits connected to the main poles, with the circuit-breaker in the closed position, between each pole and the adjacent pole(s), and between each pole and the frame, if applicable;
- for circuit-breakers incorporating electronic circuits connected to the main poles, with the circuit-breaker in the open position, between each pole and the adjacent pole(s), and between each pole and the frame if applicable, either on the incoming side or on the outgoing side, depending on the position of the electronic components.


NOTE Alternatively, disconnection of electronic circuits is permitted during the dielectric tests.

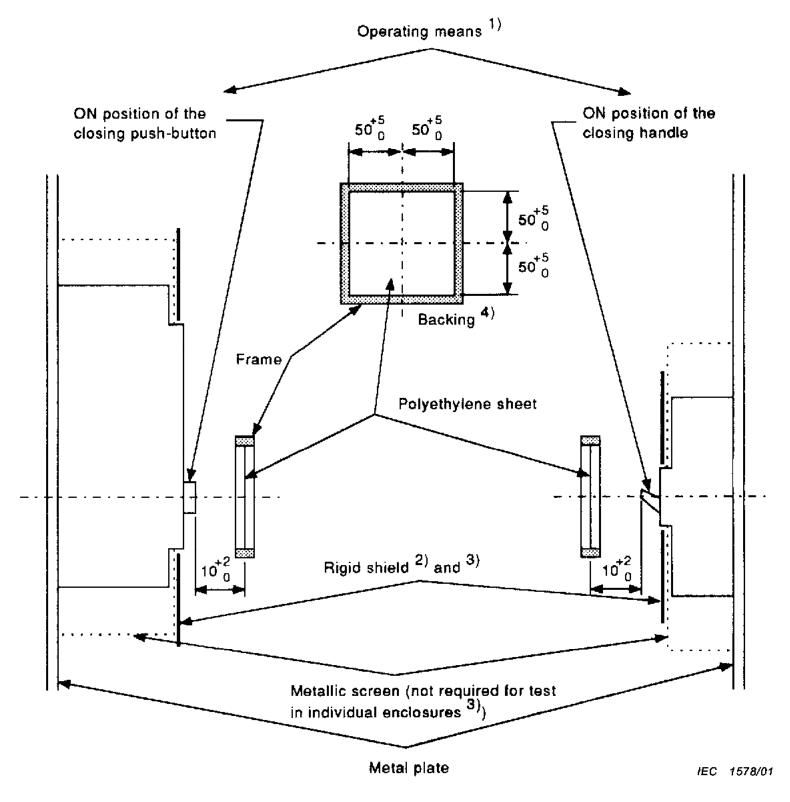
As an alternative to the tests at power frequency, an insulation resistance test at 500 V d.c. may be made across the same points on the circuit-breaker. The insulation resistance shall be not less than $0.5 \text{ M}\Omega$ at any point.

8.4.6 Test for the verification of clearances less than those corresponding to case A of table 13 of part 1

Subclause 8.3.3.4.3 of part 1 applies, except that for the purposes of this standard this test shall be a routine test.

No tests are required for clearances greater than or equal to case A of table 13 of part 1.

- 126 -


Cas d'un disjoncteur avec bouton-poussoir de fermeture

Cas d'un disjoncteur avec poignée de fermeture

Dimensions en millimètres

- 1) L'organe de manoeuvre comprend toute extension normalement utilisée pour la manoeuvre de fermeture.
- 2) L'écran rigide a pour but d'éviter que des projections issues de zones autres que celles de la poignée ou du bouton-poussoir n'atteignent la feuille de polyéthylène. (Pas exigé pour les essais en enveloppe individuelle).
- 3) L'écran rigide et la façade de la grille métallique peuvent être combinés en une seule plaque métallique conductrice.
- 4) Fait en matériau rigide convenable afin d'éviter le déchirement de la feuille de polyéthylène.

Figure 1 – Installation d'essai (câbles de raccordement non représentés) pour essais de court-circuit

Case of circuit-breaker with closing push-button

Case of circuit-breaker with a closing handle

Dimensions in millimetres

- 1) The operating means includes any extension which is normally fitted for the closing operation.
- 2) The purpose of the rigid shield is to prevent emissions from areas other than those of the handle or push-button from reaching the polyethylene sheet (not required for tests in individual enclosures).
- 3) The rigid shield and the front of the metallic screen may be combined into one single conductive metal plate.
- 4) Made of any suitable rigid material to obviate tearing of the polyethylene sheet.

Figure 1 – Test arrangement (connecting cables not shown) for short-circuit tests

Annexe A

(normative)

Coordination en condition de court-circuit entre un disjoncteur et un autre dispositif de protection contre les courts-circuits associés dans le même circuit

A.1 Introduction

Pour assurer la coordination, en condition de court-circuit, entre un disjoncteur (C₁) et un autre dispositif de protection contre les courts-circuits (DPCC) associés dans le même circuit, il est nécessaire d'examiner les caractéristiques de chacun de ces deux appareils aussi bien que leur comportement en tant qu'association.

NOTE Un DPCC peut comprendre des dispositifs de protection supplémentaires, par exemple des déclencheurs de surcharge.

Le DPCC peut être un fusible (ou un jeu de fusibles) – voir figure A.1 – ou un autre disjoncteur (C_2) (voir figures A.2 à A.5).

La comparaison des caractéristiques individuelles de fonctionnement de chacun de ces deux appareils associés peut ne pas être suffisante lorsqu'il y a lieu de se rapporter au comportement de ces deux appareils fonctionnant en série, car leurs impédances ne sont pas toujours négligeables. Il est recommandé de tenir compte de ce fait. Pour les courants de court-circuit, il est recommandé de faire référence à l^2t plutôt qu'au temps.

 C_1 est fréquemment raccordé en série avec un autre DPCC, soit du fait de la méthode de distribution de puissance adoptée pour l'installation, soit parce que le pouvoir de coupure en court-circuit du disjoncteur seul peut être insuffisant pour l'emploi envisagé. Dans de tels cas, le DPCC peut être monté dans des emplacements éloignés de C_1 . Le DPCC peut protéger une ligne d'alimentation comportant plusieurs disjoncteurs C_1 ou simplement un seul disjoncteur.

Pour de tels emplois, l'utilisateur ou l'autorité compétente peut avoir à décider, en se basant seulement sur des études théoriques, comment le niveau optimal de coordination peut être le mieux réalisé. La présente annexe est destinée à servir de guide pour cette décision et aussi pour le type d'information qu'il est recommandé au constructeur du disjoncteur d'être en mesure de fournir à l'utilisateur présumé.

Elle sert aussi de guide en ce qui concerne les prescriptions d'essais lorsque de tels essais sont jugés nécessaires à l'emploi envisagé.

Le terme «coordination» englobe à la fois l'examen de la sélectivité (voir 2.5.23 de la première partie ainsi que 2.17.2 et 2.17.3) et celui de la protection d'accompagnement (voir 2.5.24 de la première partie).

L'examen de la sélectivité peut généralement être effectué par des études théoriques (voir article A.5) alors que la vérification de la protection d'accompagnement exige normalement d'avoir recours à des essais (voir article A.6).

Lors de l'étude du pouvoir de coupure en court-circuit, on peut se rapporter, soit au pouvoir assigné de coupure ultime en court-circuit (I_{cu}), soit au pouvoir assigné de coupure de service en court-circuit (I_{cs}), suivant le critère désiré.

Annex A

(normative)

Coordination under short-circuit conditions between a circuit-breaker and another short-circuit protective device associated in the same circuit

A.1 Introduction

To ensure coordination under short-circuit conditions between a circuit-breaker (C_1) and another short-circuit protective device (SCPD) associated with it in the same circuit, it is necessary to consider the characteristics of each of the two devices as well as their behaviour as an association.

NOTE An SCPD may incorporate additional protective means, for example, overload releases.

The SCPD may consist of a fuse (or a set of fuses) – see figure A.1 – or of another circuit-breaker (C_2) (see figures A.2 to A.5.)

The comparison of the individual operating characteristics of each of the two associated devices may not be sufficient, when reference has to be made to the behaviour of these two devices operating in series, since the impedance of the devices is not always negligible. It is recommended that this should be taken into account. For short-circuit currents it is recommended that reference be made to I^2t instead of time.

 C_1 is frequently connected in series with another SCPD for reasons such as the method of power distribution adopted for the installation or because the short-circuit breaking capacity of C_1 alone may be insufficient for the proposed application. In such instances the SCPD may be mounted in locations remote from C_1 . The SCPD may be protecting a main feeder supplying a number of circuit-breakers C_1 or just an individual circuit-breaker.

For such applications the user or specifying authority may have to decide, on the basis of a desk study alone, how the optimum level of coordination may best be achieved. This annex is intended to give guidance for this decision, and also on the type of information which the circuit-breaker manufacturer should make available to the prospective user.

Guidance is also given on test requirements, where such tests are deemed necessary for the proposed application.

The term "coordination" includes consideration of discrimination (see 2.5.23 of Part 1 and also 2.17.2 and 2.17.3) as well as consideration of back-up protection (see 2.5.24 of Part 1).

Consideration of discrimination can in general be carried out by desk study (see clause A.5), whereas the verification of back-up protection normally requires the use of tests (see clause A.6).

When considering short-circuit breaking capacity, reference may be made to the rated ultimate short-circuit breaking capacity (I_{cu}), or to the rated service short-circuit breaking capacity (I_{cs}), according to the desired criterion.

60947-2 © CEI:1995+A1:1997

+A2:2001

A.2 Domaine d'application et objet

La présente annexe sert de guide et donne les prescriptions pour la coordination des disjoncteurs avec d'autres DPCC associés dans le même circuit, aussi bien en ce qui concerne la sélectivité que la protection d'accompagnement.

L'objet de cette annexe est de préciser:

- les prescriptions générales relatives à la coordination d'un disjoncteur avec un autre DPCC;
- les méthodes et les essais (s'ils sont jugés nécessaires) destinés à vérifier que les conditions de la coordination ont été remplies.

A.3 Prescriptions générales de coordination d'un disjoncteur avec un autre DPCC

A.3.1 Généralités

D'une manière idéale, la coordination devrait être telle qu'un disjoncteur (C_1) seul fonctionne pour toutes les valeurs de surintensité jusqu'à la limite de son pouvoir assigné de coupure en court-circuit I_{cu} (ou I_{cs}).

NOTE Si la valeur du courant présumé de défaut au point d'installation est inférieure au pouvoir assigné de coupure de C_1 , on peut admettre que le DPCC n'est placé dans le circuit que pour des raisons autres que la protection d'accompagnement.

Dans la pratique, les considérations suivantes sont applicables:

- a) si la valeur du courant limite de sélectivité l_s (voir 2.17.4) est trop basse, il y a risque de perte inutile de sélectivité.
- b) si la valeur du courant présumé de défaut au point d'installation est supérieure au pouvoir ultime en court circuit de C₁, le DPCC doit être choisi de telle manière que le comportement de C₁ soit conforme à A.3.3 et que le courant d'intersection I_B (voir 2.17.6), le cas échéant, réponde aux prescriptions de A.3.2.

Chaque fois que possible, le DPCC doit être placé sur le côté source de C_1 . Si le DPCC est placé sur le côté charge, il est essentiel que le raccordement entre C_1 et le DPCC soit réalisé de manière à minimiser tout risque de court-circuit.

NOTE Dans le cas de déclencheurs interchangeables, ces conditions devraient s'appliquer à chaque déclencheur concerné.

A.3.2 Courant d'intersection

Pour la protection d'accompagnement, le courant d'intersection $I_{\rm B}$ ne doit pas être supérieur au pouvoir assigné de coupure ultime $I_{\rm cu}$ de ${\rm C_1}$ seul (voir figure A.4).

A.3.3 Comportement de C₁ en association avec un autre DPCC

Pour toutes les valeurs de surintensité inférieures ou égales au pouvoir de coupure de l'association, C₁ doit répondre aux prescriptions de 7.2.5 de la première partie et l'association doit répondre aux prescriptions de 7.2.1.2.4, point a).

A.2 Scope and object

This annex gives guidance on and requirements for the coordination of circuit-breakers with other SCPDs associated in the same circuit, as regards discrimination as well as back-up protection.

The object of this annex is to state:

- the general requirements for the coordination of a circuit-breaker with another SCPD;
- the methods and the tests (if deemed necessary) intended to verify that the conditions for coordination have been met.

A.3 General requirements for the coordination of a circuit-breaker with another SCPD

A.3.1 General considerations

Ideally, the coordination should be such that a circuit-breaker (C_1) alone will operate at all values of over-current up to the limit of its rated short-circuit breaking capacity I_{cu} (or I_{cs}).

NOTE If the value of the prospective fault current at the point of installation is less than the rated ultimate short-circuit breaking capacity of C_1 , it may be assumed that the SCPD is only in the circuit for considerations other than those of back-up protection.

In practice, the following considerations apply:

- a) if the value of the selectivity limit current l_s (see 2.17.4) is too low, there is a risk of unnecessary loss of discrimination.
- b) if the value of the prospective fault current at the point of installation exceeds the rated ultimate short-circuit breaking capacity of C₁, the SCPD shall be so selected that the behaviour of C₁ is in accordance with A.3.3 and the take-over current I_B (see 2.17.6), if any, complies with the requirements of A.3.2.

Whenever possible, the SCPD shall be located on the supply side of C_1 . If the SCPD is located on the load side, it is essential that the connection between C_1 and the SCPD be so arranged as to minimize any risk of short circuit.

NOTE In the case of interchangeable releases, these considerations should apply to each relevant release.

A.3.2 Take-over current

For the purpose of back-up protection the take-over current I_B shall not exceed the rated ultimate short-circuit breaking capacity I_{cu} of C_1 alone (see figure A.4).

A.3.3 Behaviour of C₁ in association with another SCPD

For all values of over-current up to and including the short-circuit breaking capacity of the association, C_1 shall comply with the requirements of 7.2.5 of Part 1, and the association shall comply with the requirements of 7.2.1.2.4, item a).

A.4 Type et caractéristiques du DPCC associé

Sur demande, le constructeur du disjoncteur doit donner des informations sur le type et les caractéristiques du DPCC à employer avec C₁ et sur le courant présumé de court-circuit maximal pour lequel l'association est valable sous la tension d'emploi déclarée.

Les informations détaillées concernant le DPCC utilisé pour tout essai conforme à la présente annexe, c'est-à-dire nom du constructeur, désignation du type, tension assignée, courant assigné et pouvoir de coupure en court-circuit doivent figurer au compte rendu d'essai.

Le courant conditionnel de court-circuit maximal (voir 2.5.29 de la première partie) ne doit pas être supérieur au pouvoir assigné de coupure ultime en court-circuit du DPCC.

Si le DPCC associé est un disjoncteur, il doit répondre aux prescriptions de la présente norme ou de toute autre norme applicable.

Si le DPCC associé est un fusible, il doit être conforme à la norme de fusibles appropriée.

A.5 Vérification de la sélectivité

La sélectivité peut normalement être étudiée sur le seul plan théorique, c'est-à-dire en comparant les caractéristiques de fonctionnement de C_1 et du DPCC associé, par exemple lorsque le DPCC est un disjoncteur (C_2) à retard intentionnel.

Les constructeurs de C_1 et du DPCC doivent fournir des données suffisantes sur les caractéristiques de fonctionnement convenables de manière à permettre de déterminer I_s pour chaque cas d'association.

Dans certains cas, des essais à l_s sont nécessaires sur l'association, par exemple:

- lorsque C₁ est du type à limitation de courant et que C₂ n'a pas de retard intentionnel;
- lorsque le temps d'ouverture du DPCC est inférieur au temps correspondant à une demipériode.

Pour obtenir la sélectivité désirée lorsque le DPCC est un disjoncteur, un retard de courte durée peut être nécessaire pour C₂.

La sélectivité peut être partielle (voir figure A.4) ou totale jusqu'au pouvoir assigné de coupure en court-circuit I_{cu} (ou I_{cs}) de C_1 . Pour obtenir une sélectivité totale, la caractéristique de non-déclenchement de C_2 , ou la caractéristique de pré-arc du fusible doit se trouver au-dessus de la caractéristique de déclenchement (durée de coupure) de C_1 .

Deux exemples de sélectivité totale sont représentés aux figures A.2 et A.3.

A.6 Vérification de la coordination de la protection d'accompagnement

A.6.1 Détermination du courant d'intersection

La conformité aux prescriptions de A.3.2 peut être vérifiée en comparant les caractéristiques de fonctionnement de C_1 et celles du DPCC associé pour tous les réglages de C_1 et, le cas échéant, pour tous les réglages de C_2 .

A.4 Type and characteristics of the associated SCPD

On request, the manufacturer of the circuit-breaker shall provide information on the type and the characteristics of the SCPD to be used with C_1 , and on the maximum prospective short-circuit current for which the association is suitable at the stated operational voltage.

Details of the SCPD used for any tests made in accordance with this annex, i.e. manufacturer's name, type designation, rated voltage, rated current and short-circuit breaking capacity, shall be given in the test report.

The maximum conditional short-circuit current (see 2.5.29 of Part 1) shall not exceed the rated ultimate short-circuit breaking capacity of the SCPD.

If the associated SCPD is a circuit-breaker, it shall meet the requirements of this standard, or any other relevant standard.

If the associated SCPD is a fuse, it shall be in accordance with the appropriate fuse standard.

A.5 Verification of discrimination

Discrimination can normally be considered by desk study alone, i.e. by a comparison of the operating characteristics of C_1 and the associated SCPD, for example, when the associated SCPD is a circuit-breaker (C_2) provided with an intentional time-delay.

The manufacturers of both the C_1 and the SCPD shall provide adequate data concerning the relevant operating characteristics so as to permit I_s to be determined for each individual association.

In certain cases, tests at I_s are necessary on the association, for example

- when C_1 is of the current-limiting type and C_2 is not provided with an intentional time-delay;
- when the opening time of the SCPD is less than that corresponding to one half-cycle.

To obtain the desired discrimination when the associated SCPD is a circuit-breaker, an intentional short-time delay may be necessary for C_2 .

Discrimination may be partial (see figure A.4) or total up to the rated short-circuit breaking capacity I_{cu} (or I_{cs}) of C_1 . For total discrimination, the non-tripping characteristic of C_2 or the pre-arcing characteristic of the fuse shall lie above the tripping (break-time) characteristic of C_1 .

Two illustrations of total discrimination are given in figures A.2 and A.3.

A.6 Verification of back-up protection

A.6.1 Determination of the take-over current

Compliance with the requirements of A.3.2 can be checked by comparing the operating characteristics of C_1 and the associated SCPD for all settings of C_1 and, if applicable, for all settings of C_2 .

A.6.2 Vérification de la protection d'accompagnement

a) Vérification par des essais

La conformité aux prescriptions de A.3.3 est normalement vérifiée par des essais conformes à A.6.3. Dans ce cas, toutes les conditions d'essai doivent être comme spécifié en 8.3.2.6, les résistances et inductances réglables pour les essais de court-circuit étant placées côté source de l'association.

b) Vérification par comparaison des caractéristiques

Dans quelques cas pratiques et lorsque le DPCC est un disjoncteur (voir figures A.4 et A.5), il peut être suffisant de comparer les caractéristiques de fonctionnement de C₁ et du DPCC associé, en portant une attention particulière aux points suivants:

- valeurs de l'intégrale de Joule de C₁ à son l_{cu} et celle du DPCC au courant présumé de l'association;
- influence sur C₁ (par exemple de l'énergie d'arc, du courant de crête maximal, courant coupé limité) à la valeur de crête du courant de fonctionnement du DPCC.

On peut évaluer l'adaptation de l'association en examinant la caractéristique I^2t de fonctionnement totale maximale du DPCC sur le domaine allant du pouvoir assigné de coupure en court-circuit I_{cu} (ou I_{cs}) de C_1 au courant de court-circuit présumé de l'emploi envisagé, mais ne dépassant pas la valeur maximale de I^2t admissible par C_1 à son pouvoir assigné de coupure en court-circuit ou une autre valeur limite plus basse précisée par le constructeur.

NOTE Lorsque le DPCC associé est un fusible, l'étude théorique n'est valable que jusqu'à I_{cu} de C_1 .

A.6.3 Essais de vérification de la protection d'accompagnement

Si C₁ est équipé de déclencheurs d'ouverture réglables à maximum de courant, les caractéristiques de fonctionnement doivent être celles correspondant à la durée et au courant de réglage minimaux.

Si C_1 peut être équipé de déclencheurs instantanés d'ouverture à maximum de courant, les caractéristiques de fonctionnement à utiliser doivent être celles correspondant à C_1 équipé de tels déclencheurs.

Si le DPCC est un disjoncteur (C_2) équipé de déclencheurs d'ouverture réglables à maximum de courant, les caractéristiques de fonctionnement à utiliser doivent être celles correspondant à la durée et au courant de réglage maximaux.

Lorsque le DPCC associé est un jeu de fusibles, chaque essai doit être fait en utilisant un nouveau jeu de fusibles, même si certains fusibles utilisés pendant un essai précédent n'ont pas fondu.

S'il y a lieu, les câbles de raccordement doivent être inclus, comme spécifié en 8.3.2.6.4 sauf que, si le DPCC associé est un disjoncteur (C₂), la longueur totale (75 cm) du câble associé à ce disjoncteur peut être située côté source (voir figure A.6).

Chaque essai doit consister en une séquence de manoeuvre O-t-CO, effectuée conformément à 8.3.5 de la présente norme soit à I_{cu} ou I_{cs} , la manoeuvre CO étant effectuée sur C_1 .

Un essai est effectué au courant présumé maximal pour l'emploi proposé. Ce courant ne doit pas être supérieur au courant assigné de court-circuit conditionnel (voir 4.3.6.4 de la première partie).

Un essai supplémentaire doit être effectué à une valeur de courant présumé égale au pouvoir assigné de coupure en court-circuit I_{cu} (ou I_{cs}) de C_1 ; pour cet essai, un nouvel échantillon C_1 peut être utilisé et, si le DPCC associé est un disjoncteur, un nouvel échantillon de C_2 peut aussi être utilisé.

A.6.2 Verification of back-up protection

a) Verification by tests

Compliance with the requirements of A.3.3 is normally verified by tests in accordance with A.6.3. In this case, all the conditions for the tests shall be as specified in 8.3.2.6 with the adjustable resistors and inductors for the short-circuit tests on the supply side of the association.

b) Verification by comparison of characteristics

In some practical cases and where the SCPD is a circuit-breaker (see figures A.4 and A.5), it may be possible to compare the operating characteristics of C_1 and of the associated SCPD, special attention being paid to the following:

- the Joule integral value of C₁ at its I_{cu} and that of the SCPD at the prospective current of association;
- the effects on C₁ (e.g. by arc energy, by maximum peak current, cut-off current) at the peak operating current of the SCPD.

The suitability of the association may be evaluated by considering the maximum total operating I^2t characteristic of the SCPD, over the range from the rated short-circuit breaking capacity I_{cu} (or I_{cs}) of C_1 up to the prospective short-circuit current of the application, but not exceeding the maximum let-through I^2t of C_1 at its rated short-circuit breaking capacity or other lower limiting value stated by the manufacturer.

NOTE Where the associated SCPD is a fuse, the validity of the desk study is limited up to I_{cu} of C_1 .

A.6.3 Tests for verification of back-up protection

If C_1 is fitted with adjustable over-current opening releases, the operating characteristics shall be those corresponding to the minimum time and current settings.

If C_1 can be fitted with instantaneous over-current opening releases, the operating characteristics to be used shall be those corresponding to C_1 fitted with such releases.

If the associated SCPD is a circuit-breaker (C_2) fitted with adjustable over-current opening releases, the operating characteristics to be used shall be those corresponding to the maximum time and current settings.

If the associated SCPD consists of a set of fuses, each test shall be made using a new set of fuses, even if some of the fuses used during a previous test have not blown.

Where applicable, the connecting cables shall be included as specified in 8.3.2.6.4 except that, if the associated SCPD is a circuit-breaker (C_2), the full length of cable (75 cm) associated with this circuit-breaker may be on the supply side (see figure A.6).

Each test shall consist of a O-t-CO sequence of operations made in accordance with 8.3.5 of this standard, whether at I_{cu} or I_{cs} , the CO operation being made on C₁.

A test is made with the maximum prospective current for the proposed application. This shall not exceed the rated conditional short-circuit (see 4.3.6.4 of Part 1).

A further test shall be made at a value of prospective current equal to the rated short-circuit breaking capacity l_{cu} (or l_{cs}) of C_1 , for which test a new sample C_1 may be used, and also, if the associated SCPD is a circuit-breaker, a new sample C_2 .

Au cours de chaque manoeuvre:

- a) si le DPCC associé est un disjoncteur (C2):
 - soit C₁ et C₂ déclenchent aux deux courants d'essai, aucun autre essai n'étant alors exigé.

C'est le cas général et n'assure que la protection d'accompagnement.

 soit C₁ déclenche et C₂ est en position de fermeture à la fin de chaque manoeuvre aux deux courants d'essai, aucun essai complémentaire n'étant alors exigé.

Cela nécessite que les contacts de C₂ se séparent momentanément au cours de chaque manoeuvre. Dans ce cas, le rétablissement de l'alimentation est assuré en plus de la protection d'accompagnement (voir note 1 de la figure A.4). La durée d'interruption de l'alimentation doit être enregistrée, le cas échéant, au cours de ces essais.

 soit C₁ déclenche au courant d'essai le plus faible, et C₁ et C₂ déclenchent tous deux au courant d'essai le plus élevé.

Cela nécessite que les contacts de C_2 se séparent momentanément au courant d'essai le plus faible. Des essais supplémentaires doivent être effectués à des valeurs de courant intermédiaires pour déterminer la valeur du courant la plus faible à laquelle C_1 et C_2 déclenchent tous les deux et jusqu'à laquelle le rétablissement de l'alimentation est assuré. La durée d'interruption de l'alimentation doit, le cas échéant, être enregistrée au cours de ces essais.

- b) lorsque le DPCC est un fusible (ou un jeu de fusibles):
 - dans le cas d'un circuit monophasé, un fusible au moins doit fondre;
 - dans le cas d'un circuit à plusieurs phases, au moins deux fusibles doivent fondre ou bien un fusible doit fondre et C₁ doit déclencher.

A.6.4 Résultats à obtenir

Le 8.3.4.1.7 de la première partie est applicable.

Après les essais, C₁ doit répondre aux dispositions de 8.3.5.3 et 8.3.5.4.

De plus, si le DPCC associé est un disjoncteur (C_2) , on doit vérifier par une manoeuvre manuelle ou tout autre moyen approprié que les contacts de C_2 ne sont pas soudés.

– 137 –

During each operation

- a) if the associated SCPD is a circuit-breaker (C2):
 - either both C₁ and C₂ shall trip at both test currents, no further tests then being required.

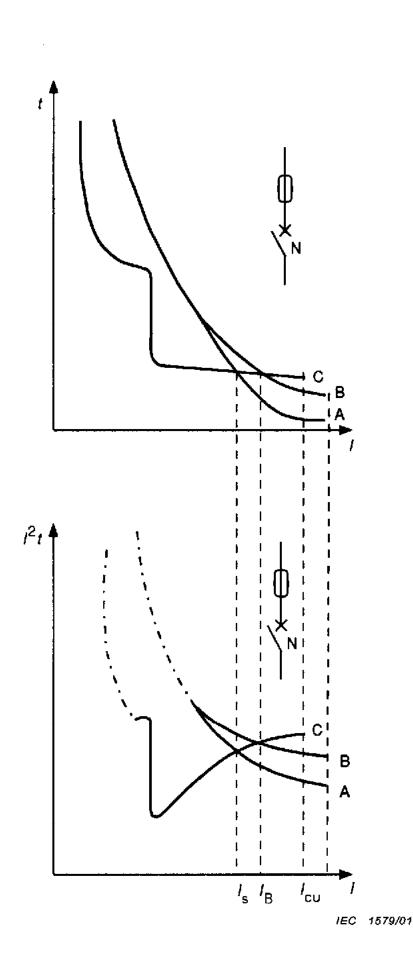
This is the general case and provides back-up protection only.

 or C₁ shall trip and C₂ shall be in the closed position at the end of each operation, at both test currents, no further tests then being required.

This requires that the contacts of C_2 separate momentarily during each operation. In this case restoration of the supply is provided, in addition to back-up protection (see note 1 to figure A.4). The duration of interruption of supply, if any, shall be recorded during these tests.

 or C₁ shall trip at the lower test current, and both C₁ and C₂ shall trip at the higher test current.

This requires that the contacts of C_2 separate momentarily at the lower test current. Additional tests shall be made at intermediate currents to determine the lowest current at which both C_1 and C_2 trip, up to which current restoration of supply is provided. The duration of interruption of supply, if any, shall be recorded during these tests.


- b) if the associated SCPD is a fuse (or a set of fuses):
 - in the case of a single-phase circuit at least one fuse shall blow;
 - in the case of a multi-phase circuit either two or more fuses shall blow, or one fuse shall blow and C₁ shall trip.

A.6.4 Results to be obtained

Subclause 8.3.4.1.7 of Part 1 applies.

Following the tests, C₁ shall comply with 8.3.5.3 and 8.3.5.4

In addition, if the associated SPCD is a circuit-breaker (C_2) , it shall be verified, by manual operation or other appropriate means, that the contacts of C_2 have not welded.

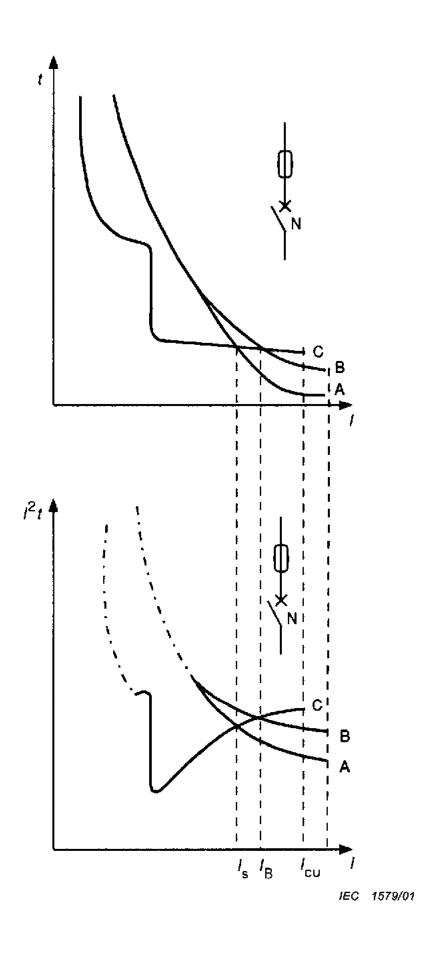
I = Courant de court-circuit présumé

I_{cu} = Pouvoir assigné de coupure ultime en court-circuit (4.3.5.2.1)

I_s = Courant limite de sélectivité (2.17.4)

I_B = Courant d'intersection (2.17.6)

A = Caractéristique de préarc du fusible


B = Caractéristique de fonctionnement du fusible

 C = Caractéristique de fonctionnement du disjoncteur, non limiteur de courant (N) (durée de coupure/courant et l²t /courant)

NOTE 1 A est estimé être la limite inférieure; B et C sont estimés être les limites supérieures.

NOTE 2 Zone non adiabatique pour l^2t repérée en ligne discontinue.

Figure A.1 – Coordination pour la surintensité entre un disjoncteur et un fusible ou protection d'accompagnement par un fusible: caractéristiques de fonctionnement

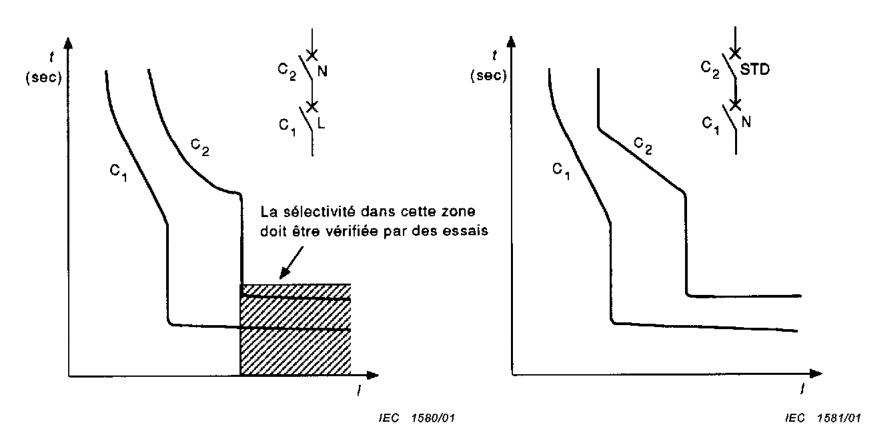
I = Prospective short-circuit current

I_{cu} = Rated ultimate short-circuit breaking capacity (4.3.5.2.1)

 I_s = Selectivity limit current (2.17.4)

 $I_{\rm B}$ = Take-over current (2.17.6)

A = Pre-arcing characteristic of the fuse


B = Operating characteristic of the fuse

C = Operating characteristic of the circuitbreaker, non-current-limiting (N) (break-time/current and I²t /current)

NOTE 1 A is deemed to be the lower limit; B and C are deemed to be the upper limits.

NOTE 2 Non-adiabatic zone for I^2t shown chain-dotted.

Figure A.1 – Over-current coordination between a circuit-breaker and a fuse or back-up protection by a fuse: operating characteristics

C₁ = Disjoncteur limiteur de courant (L) (caractéristique de temps de coupure)

 C_1 = Disjoncteur non limiteur de courant (N) (caractéristique de temps de coupure)

C₂ = Disjoncteur non limiteur de courant (N) (caractéristique de déclenchement)

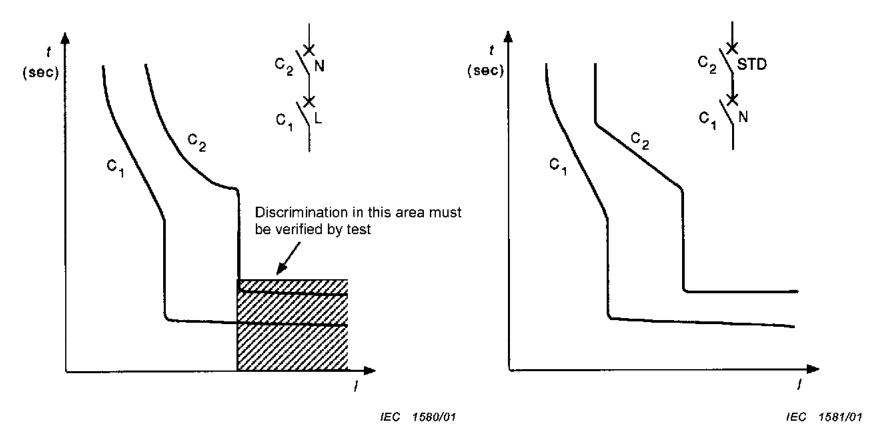

 C_2 = Disjoncteur avec retard intentionnel de courte durée (STD) (caractéristique de déclenchement)

Figure A.3

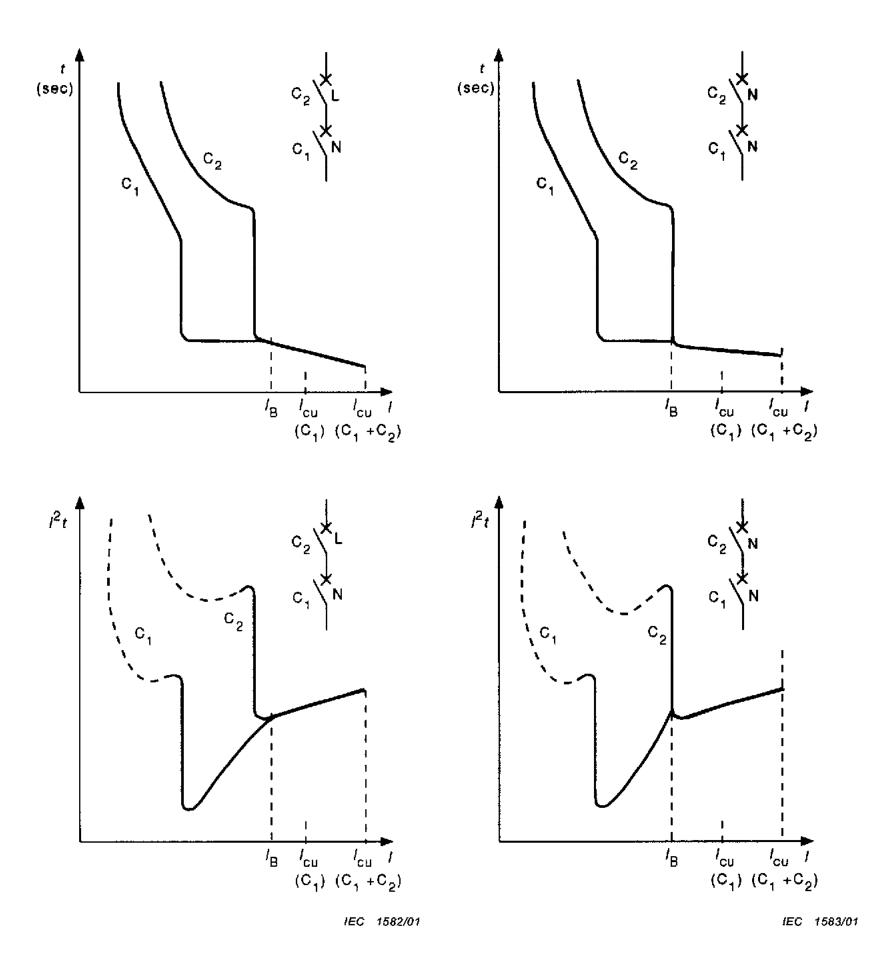
Les valeurs $I_{\rm cu}$ (ou $I_{\rm cs}$) ne sont pas indiquées.

Figure A.2

Sélectivité totale entre deux disjoncteurs

C₁ = Current-limiting circuit-breaker (L) (break-time characteristic)

C₁ = Non-current-limiting circuit-breaker (N) (break-time characteristic)


C₂ = Non-current-limiting circuit breaker (N) (tripping characteristic)

C₂ = Circuit-breaker with intentional short-time delay (STD) (tripping characteristic)

Values of $I_{\rm cu}$ (or $I_{\rm cs}$) are not shown.

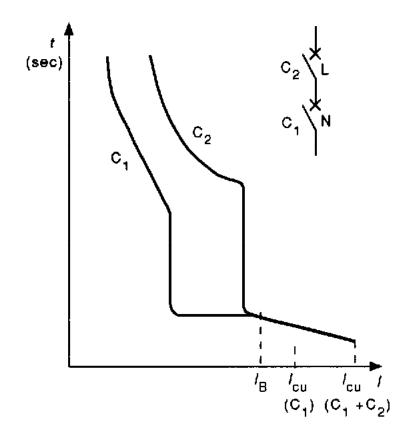
Figure A.2 Figure A.3

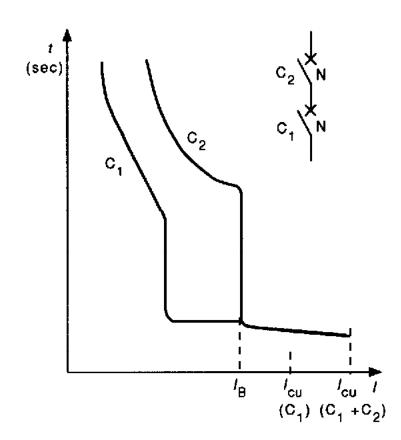
Total discrimination between two circuit-breakers

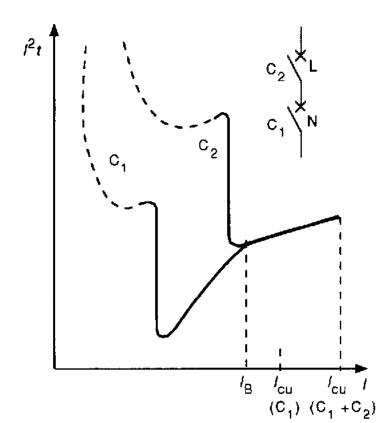
 C_1 = Disjoncteur non limiteur de courant (N) C_1 , C_2 = Disjoncteurs non limiteurs de courant (N)

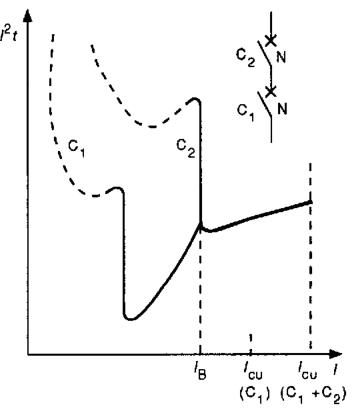
 $I_{\rm B}$ = Courant d'intersection

NOTE 1 Le cas échéant, le rétablissement a lieu par C2.


C₂ = Disjoncteur limiteur de courant (L)


NOTE 2 I_{cu} (C₁ + C₂) $\leq I_{cu}$ (C₂)


NOTE 3 Pour les valeurs $l \ge l_{\rm B}$, la courbe est celle de l'association (montrée en gras), pour laquelle les données doivent être obtenues par des essais.


Figure A.4 Figure A.5

Protection d'accompagnement par un disjoncteur – Caractéristiques de fonctionnement

IEC 1582/01

IEC 1583/01

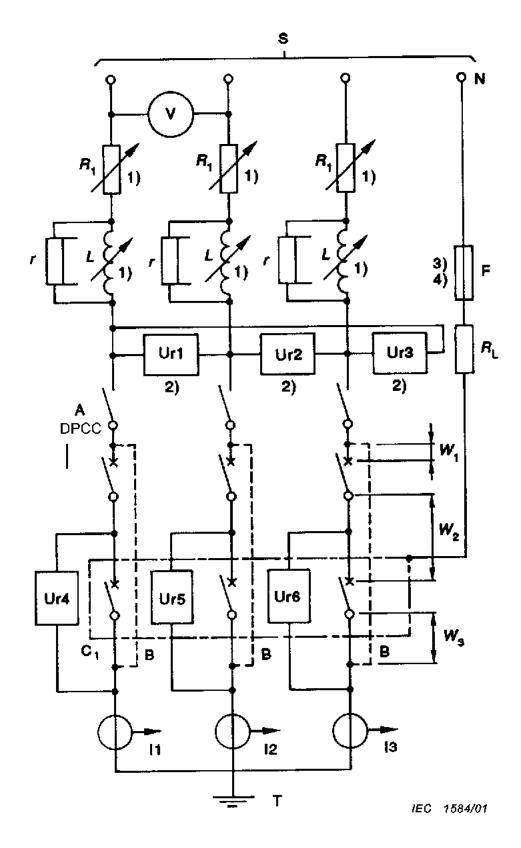
C₁ = Non current-limiting circuit-breaker (N)

 C_1 , C_2 = Non current-limiting circuit-breaker (N)

 C_2 = Current-limiting circuit breaker (L)

 $I_{\rm B}$ = Take-over current

NOTE 1 Where applicable, restoration of supply by C2 occurs.


NOTE 2 I_{cu} (C₁ + C₂) $\leq I_{cu}$ (C₂)

NOTE 3 For values of $I > I_B$, the curve is that of the association (shown in bold) for which data must be obtained by tests.

Figure A.4

Figure A.5

Back-up protection by a circuit-breaker - Operating characteristics

S = Source

Ur1, Ur2, Ur3 = Capteurs de tension

Ur4, Ur5, Ur6

V = Dispositif de mesure de tension

A = Dispositif d'enclenchement

R₁ = Résistance réglable

N = Neutre de la source (ou neutre artificiel)

F = Elément fusible (8.3.4.1.2, point d) de la partie 1)

L = Inductances réglables

R_L = Résistance de limitation du courant de défaut

B = Connexions provisoires d'étalonnage

11, 12, 13 = Dispositifs d'enregistrement des courants

T = Terre – un seul point de terre (côté charge ou côté source)

r =Résistance shunt (8.3.4.1.2, point b) de la partie 1)

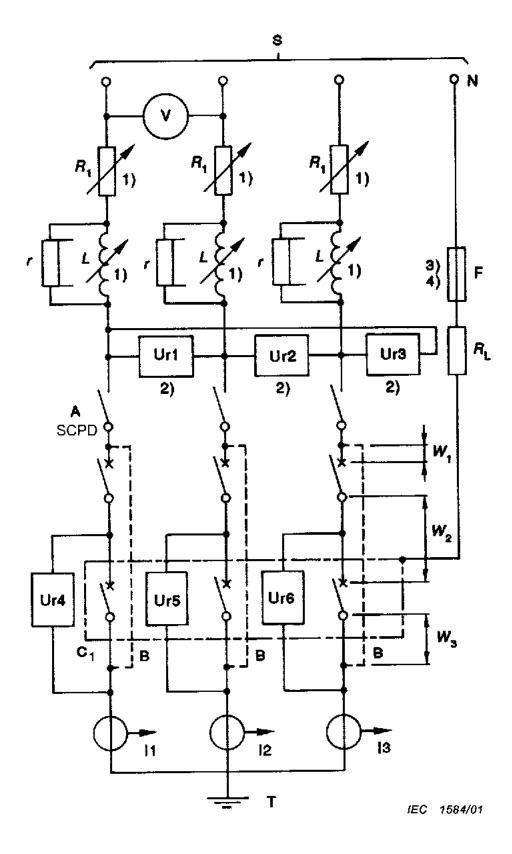
 $W_1 = 75$ cm de câble de courant assigné selon le DPCC

 W_2 = 50 cm de câble de courant assigné selon C_1 W_3 = 25 cm de câble de courant assigné selon C_1

 $DPCC = Disjoncteur C_2$ ou jeu de 3 fusibles

C₁ = Disjoncteur à l'essai

NOTE 1 Les charges réglables L et R_1 peuvent être disposées, soit dans la partie haute tension, soit dans la partie basse tension du circuit d'alimentation, le dispositif d'enclenchement A étant disposé dans la partie basse tension.


NOTE 2 Ur1, Ur2, Ur3 peuvent, en variante, être raccordés entre phase et neutre.

NOTE 3 Dans le cas d'appareils destinés à être employés dans un réseau dont une phase est reliée à la terre, F doit être raccordé à une phase de l'alimentation.

NOTE 4 Aux Etats-Unis et au Canada (voir note 4.3.1.1), F doit être relié:

- à une phase de l'alimentation pour les matériels marqués d'une seule valeur de U_e ;
- au neutre pour les matériels marqués d'une double valeur de U_{e} .

Figure A.6 – Exemple de circuit d'essai pour les essais de pouvoir de coupure en court-circuit montrant les connexions d'un disjoncteur triphasé (C₁)

S = Supply

Ur1, Ur2, Ur3 = Voltage sensors

Ur4, Ur5, Ur6

V = Voltage measuring device

A = Closing device

R₁ = Adjustable resistor

N = Neutral of supply (or artificial neutral)

F = Fusible element (8.3.4.1.2, item d) of Part 1)

L = Adjustable reactors

R_L = Fault current limiting resistor

B = Temporary connections for calibration

11, 12, 13 = Current sensing devices

T = Earth:— one earthing point only (load side or supply side)

r = Shunting resistor (8.3.4.1.2, item b) of Part 1)

 $W_1 = 75$ cm of cable rated for SCPD

 $W_2 = 50$ cm of cable rated for C_1

 W_3 = 25 cm of cable rated for C₁

SCPD = Circuit-breaker C2 or set of 3 fuses

C₁ = Circuit-breaker under test

NOTE 1 Adjustable loads L and R_1 may be located either on the high voltage side or on the low voltage side of the supply circuit, the closing device A being located on the low voltage side.

NOTE 2 Ur1, Ur2, Ur3 may, alternatively, be connected between phase and neutral.

NOTE 3 In the case of devices intended for use in a phase-earthed network, F shall be connected to one phase of the supply.

NOTE 4 In the USA and Canada (see note to 4.3.1.1) F shall be connected:

- to one phase of the supply for equipment marked with a single value of $U_{\rm e}$;
- to the neutral for equipment marked with a twin voltage.

Figure A.6 – Example of test circuit for conditional short-circuit breaking capacity tests showing cable connections for a 3-pole circuit-breaker (C₁)

- 146 - 60947-2 © CEI:1995+A1:1997 +A2:2001

Annexe B

(normative)

Disjoncteurs à protection incorporée par courant différentiel résiduel

INTRODUCTION

Pour assurer la protection contre les dangers occasionnés par les chocs électriques, des dispositifs agissant sous l'effet des courants différentiels résiduels sont utilisés comme mesure de protection. Ces dispositifs sont fréquemment utilisés en conjonction avec un disjoncteur ou comme partie intégrante de celui-ci pour répondre à un double objectif, c'est-à-dire:

- assurer la protection des installations contre les surcharges et contre les courants de courtcircuit:
- assurer la protection des personnes contre les contacts indirects, c'est-à-dire les augmentations dangereuses du potentiel à la terre dues à une isolation défectueuse.

Les dispositifs à courant différentiel résiduel peuvent assurer également une protection supplémentaire contre les dangers d'incendie ou autres dangers qui peuvent se développer à la suite d'un défaut à la terre de nature persistante qui ne peut être détecté par le dispositif de protection contre les surintensités.

Les dispositifs à courant différentiel résiduel dont le courant différentiel résiduel assigné ne dépasse pas 30 mA sont également utilisés comme moyens de protection supplémentaires contre les contacts directs en cas de défaillance des moyens de protection prévus.

Les prescriptions pour l'installation de tels dispositifs sont spécifiées dans les différentes sections de la CEI 60364.

La présente annexe est fondée principalement sur les prescriptions correspondantes des CEI 60755, CEI 61008-1 et CEI 61009-1.

B.1 Domaine d'application et objet

La présente annexe est applicable aux disjoncteurs assurant la protection par courant différentiel résiduel (DPR). Elle contient les prescriptions pour les appareils qui assurent à la fois la détection des courants différentiels résiduels, comparent ces mesures à une valeur réglée au préalable et provoquent la coupure du circuit protégé lorsque cette valeur est dépassée.

La présente annexe est applicable:

- aux disjoncteurs conformes à la présente norme et dont la fonction courant différentiel résiduel constitue une partie intégrée (désignés ci-après DPR intégrés);
- aux DPR combinant un dispositif à courant différentiel résiduel (désignés ci-après unités c.r.) et un disjoncteur conforme à la présente norme; ils peuvent être combinés, mécaniquement et électriquement, soit en usine, soit sur le site par l'utilisateur, suivant les instructions du constructeur.

Cette annexe couvre également les prescriptions pour les DPR concernant la compatibilité électromagnétique (CEM).

NOTE Les moyens de détection du courant du neutre peuvent, le cas échéant, être extérieurs au disjoncteur ou à la combinaison suivant le cas.

Annex B (normative)

Circuit-breakers incorporating residual current protection

INTRODUCTION

To provide protection against the effects of electric shock hazards, devices reacting to residual differential currents are used as protective systems. Such devices are frequently used in conjunction with or as an integral part of a circuit-breaker to achieve a two-fold goal, i.e.:

- providing protection of installations against overloads and short-circuit currents;
- providing protection of persons against indirect contact, i.e. hazardous increases of ground potential due to defective insulation.

Residual current devices may also provide additional protection against fire and other hazards which may develop as a result of an earth fault of a lasting nature which cannot be detected by the over-current protective device.

Residual current devices having a rated residual current not exceeding 30 mA are also used as a means for additional protection against direct contact in case of failure of the relevant protective means.

The requirements for the installation of such devices are specified in various sections of IEC 60364.

This annex is essentially based upon the relevant requirements of IEC 60755, IEC 61008-1 and IEC 61009-1.

B.1 Scope and object

This annex applies to circuit-breakers providing residual current protection (CBRs). It covers the requirements for units which concurrently perform residual current detection, compare such measurements with a preset value and cause the protected circuit to be switched off when this value is exceeded.

This annex applies to:

- circuit-breakers according to this standard which incorporate the residual current function as an integrated feature (hereinafter called integral CBRs);
- CBRs consisting of a combination of a residual current device (hereinafter referred to as r.c. units) and a circuit-breaker according to this standard; their combination both mechanically and electrically, may be carried out either at the factory or in the field by the user according to the manufacturer's instructions.

This annex also covers requirements for CBRs concerning electromagnetic compatibility (EMC).

NOTE The neutral current sensing means, if any, may be external to the circuit-breaker or the combination, as the case may be.

La présente annexe n'est applicable qu'aux DPR destinés à être utilisés dans des circuits à courant alternatif.

La fonction «courant différentiel résiduel» des DPR visés par la présente annexe peut ou non dépendre fonctionnellement de la tension d'alimentation. Les DPR dépendant d'une autre source d'alimentation ne sont pas visés par cette annexe.

Cette annexe n'est pas applicable aux matériels dont les dispositifs de détection du courant à l'exception des dispositifs de détection du courant du neutre ou l'appareil de traitement sont montés séparément du disjoncteur.

La présente annexe a pour objet de fixer:

- a) les caractéristiques spécifiques de la fonction courant différentiel résiduel;
- b) les prescriptions spécifiques auxquelles doivent répondre les DPR
 - dans les conditions normales du circuit;
 - dans les conditions anormales du circuit, qu'elles se rapportent ou non au courant différentiel résiduel;
- c) les essais qui doivent être effectués pour vérifier la conformité des prescriptions du point b)
 ci-dessus, ainsi que les procédures d'essai appropriées;
- d) les informations correspondantes sur le matériel.

B.2 Définitions

En complément à l'article 2 de la présente norme, les définitions extraites (ou dérivant) de celles de la CEI 60755 sont applicables:

B.2.1 Définitions relatives aux courants circulant entre les parties actives et la terre

B.2.1.1

courant de défaut à la terre

courant qui s'écoule à la terre lors d'un défaut d'isolement

B.2.1.2

courant de fuite

courant qui s'écoule des parties actives à la terre, en l'absence de tout défaut d'isolement

B.2.2 Définitions relatives à l'alimentation d'un DPR

B.2.2.1

grandeur d'alimentation

grandeur électrique qui, seule ou en combinaison avec d'autres grandeurs électriques, doit être appliquée à un DPR pour qu'il puisse fonctionner dans des conditions spécifiées

B.2.2.2

grandeur d'alimentation d'entrée

grandeur d'alimentation par laquelle le DPR est mis en action, lorsqu'elle est appliquée dans des conditions spécifiées

Ces conditions peuvent prévoir, par exemple, l'alimentation de certains organes auxiliaires.

B.2.2.3

courant différentiel résiduel (I_{Λ})

somme vectorielle des courants qui circulent dans le circuit principal du DPR, exprimée en valeur efficace

– 149 –

This annex applies only to CBRs intended for use in a.c. circuits.

The residual current function of CBRs covered by this annex may or may not be functionally dependent on line voltage. CBRs depending on an alternative supply source are not covered by this annex.

This annex does not apply to equipment where the current sensing means (except the neutral current sensing means) or the processing device are mounted separately from the circuit-breaker.

The object of this annex is to state:

- a) the specific features of the residual current function;
- b) the specific requirements which shall be complied with by the CBR
 - under normal circuit conditions;
 - under abnormal circuit conditions, whether of a residual current nature or not;
- c) the tests which shall be performed to verify compliance with the requirements in b) above, together with the appropriate test procedures;
- d) the relevant product information.

B.2 Definitions

As a complement to clause 2 of this standard the following definitions, taken from (or derived from) those of IEC 60755, apply:

B.2.1 Definitions relating to currents flowing from live parts to earth

B.2.1.1

earth fault current

current flowing to earth due to an insulation fault

B.2.1.2

earth leakage current

current flowing from the live parts of the installation to earth in the absence of an insulation fault

B.2.2 Definitions relating to the energization of a CBR

B.2.2.1

energizing quantity

an electrical energizing quantity which, alone or in combination with other such quantities, shall be applied to a CBR to enable it to accomplish its function under specified conditions

B.2.2.2

energizing input-quantity

energizing quantity by which the CBR is activated when it is applied under specific conditions

These conditions may involve, for example, the energizing of certain auxiliary elements.

B.2.2.3

residual current (I_{Δ})

vectorial sum of the currents flowing in the main circuit of the CBR, expressed as an r.m.s.

B.2.2.4

courant différentiel résiduel de fonctionnement

valeur du courant différentiel résiduel qui fait fonctionner le DPR dans des conditions spécifiées

B.2.2.5

courant différentiel résiduel de non-fonctionnement

valeur du courant différentiel résiduel pour laquelle (et au-dessous de laquelle) le DPR ne fonctionne pas dans des conditions spécifiées

B.2.3 Définitions relatives au fonctionnement et aux fonctions des DPR

B.2.3.1

disjoncteur à protection par courant différentiel résiduel incorporée (DPR)

disjoncteur (voir 2.1) conçu pour provoquer l'ouverture des contacts lorsque le courant différentiel résiduel atteint une valeur donnée dans des conditions spécifiées

B.2.3.2

DPR fonctionnellement indépendant de la tension d'alimentation

DPR pour lequel les fonctions de détection, d'évaluation et de coupure ne dépendent pas de la tension d'alimentation

NOTE Cet appareil est défini en 2.3.2 de la CEI 60755 comme dispositif différentiel résiduel sans source auxiliaire.

B.2.3.3

DPR fonctionnellement dépendant de la tension d'alimentation

DPR pour lequel les fonctions de détection, d'évaluation ou de coupure dépendent de la tension d'alimentation

NOTE 1 Cette définition répond en partie à la définition des dispositifs différentiels résiduels avec source auxiliaire de 2.3.3 de la CEI 60755.

NOTE 2 Il est entendu que la tension d'alimentation pour la détection, l'évaluation ou l'interruption est celle appliquée au DPR.

B.2.3.4

détection

fonction qui consiste à détecter la présence d'un courant différentiel résiduel

NOTE Cette fonction peut être remplie, par exemple, par un transformateur effectuant la somme vectorielle des courants.

B.2.3.5

évaluation

fonction qui consiste à donner au dispositif différentiel résiduel la possibilité de fonctionner quand le courant différentiel résiduel détecté dépasse une valeur de référence spécifiée

B.2.3.6

coupure

fonction consistant à amener automatiquement les contacts principaux du dispositif différentiel résiduel de la position de fermeture à la position d'ouverture, interrompant ainsi le ou les courants qui les traversent

B.2.3.7

temps limite de non-réponse

temps maximal pendant lequel on peut appliquer au DPR une valeur du courant différentiel résiduel supérieure à la valeur du courant différentiel résiduel de non-fonctionnement, sans provoquer son fonctionnement

– 151 –

B.2.2.4

residual operating current

value of the residual current which causes the CBR to operate under specified conditions

B.2.2.5

residual non-operating current

value of the residual current at which (and below which) the CBR does not operate under specified conditions

B.2.3 Definitions relating to the operation and the functions of a CBR

B.2.3.1

circuit-breaker incorporating residual current protection (CBR)

circuit-breaker (see 2.1) designed to cause the opening of the contacts when the residual current attains a given value under specified conditions

B.2.3.2

CBR functionally independent of line voltage

CBR for which the functions of detection, evaluation and interruption do not depend on the line voltage

NOTE This device is defined in 2.3.2 of IEC 60755 as a residual current device without auxiliary source.

B.2.3.3

CBR functionally dependent on line voltage

CBR for which the functions of detection, evaluation and or interruption depend on the line voltage

NOTE 1 This definition partially covers the definition of residual current devices with auxiliary source given in 2.3.3 of IEC 60755.

NOTE 2 It is understood that the line voltage for detection, evaluation or interruption is applied to the CBR.

B.2.3.4

detection

function consisting of sensing the presence of a residual current

NOTE This function may for example, be performed, by a transformer effecting the vectorial sum of the currents.

B.2.3.5

evaluation

function consisting of giving to the CBR the possibility to operate when the detected residual current exceeds a specified reference value

B.2.3.6

interruption

function consisting of bringing automatically the main contacts of the CBR from the closed position to the open position, thereby interrupting the current flowing through them

B.2.3.7

limiting non-actuating time

maximum delay during which a residual current higher than the rated residual non-operating current can be applied to the CBR without bringing it actually to operate

B.2.3.8

DPR temporisé

DPR spécialement conçu pour atteindre une valeur prédéterminée du temps limite de nonréponse correspondant à une valeur donnée du courant différentiel résiduel

La caractéristique courant différentiel résiduel/temporisation peut ou non être à temps inverse.

B.2.3.9

DPR avec unité c.r. à réarmement

DPR muni d'une unité c.r. qui doit être intentionnellement réarmée par des moyens différents des moyens de manoeuvre du DPR, avant que celui-ci puisse se refermer

B.2.3.10

dispositif de contrôle

dispositif destiné à vérifier, en simulant un courant différentiel résiduel, que le DPR fonctionne

B.2.4 Définitions relatives aux valeurs et aux domaines des grandeurs d'alimentation

B.2.4.1

valeur limite de surintensité de non-fonctionnement dans le cas d'une charge monophasée valeur maximale de surintensité dans un circuit monophasé qui, en l'absence de courant différentiel résiduel, peut circuler dans un DPR sans provoquer la manoeuvre de celui-ci (quel que soit le nombre de pôles) (voir B.7.2.7)

B.2.4.2

pouvoir de fermeture et de coupure différentiel résiduel en court-circuit

valeur de la composante alternative du courant différentiel résiduel de court-circuit présumé qu'un DPR est capable d'établir, de supporter pendant son temps de déclenchement et d'interrompre dans des conditions prescrites d'emploi et de comportement

B.3 Classification

- B.3.1 Classification selon le mode de fonctionnement de la fonction courant différentiel résiduel
- **B.3.1.1 DPR fonctionnellement indépendant de la tension d'alimentation** (voir B.2.3.2)
- **B.3.1.2 DPR fonctionnellement dépendant de la tension d'alimentation** (voir B.2.3.3 et B.7.2.11)
- **B.3.1.2.1** S'ouvrant automatiquement en cas de défaillance de la tension d'alimentation avec ou sans retard.
- **B.3.1.2.2** Ne s'ouvrant pas automatiquement en cas de défaillance de la tension d'alimentation.
- **B.3.1.2.2.1** Capables de déclencher en cas d'une situation présentant des risques (par exemple dus à un défaut à la terre) apparaissant lors d'une défaillance de la tension d'alimentation:
- en cas de perte d'une phase dans un circuit triphasé;
- dans des cas de chute de tension.

NOTE Les cas indiqués dans ce paragraphe visent aussi les DPR qui ne peuvent pas s'ouvrir automatiquement lorsqu'il n'existe pas de situation présentant des risques.

B.3.1.2.2.2 Incapables de déclencher en cas de situation dangereuse apparaissant lors d'une défaillance de la tension d'alimentation.

97 – 153 –

B.2.3.8

time-delay CBR

CBR specially designed to attain a predetermined value of limiting non-actuating time corresponding to a given value of residual current

The residual current time-delay characteristic may or may not be of an inverse time/current nature.

B.2.3.9

CBR with resettable r.c. unit

CBR with an r.c. unit which must be intentionally reset by a means different from the operating means of the CBR, following the occurrence of a residual current, before it can be reclosed

B.2.3.10

test device

device simulating a residual current for checking that the CBR operates

B.2.4 Definitions relating to values and ranges of energizing quantities

B.2.4.1

limiting value of the non-operating over-current in the case of a single-phase load maximum value of a single-phase over-current which, in the absence of a residual current, can flow through a CBR (whatever the number of poles) without causing it to operate (see B.7.2.7)

B.2.4.2

residual short-circuit making and breaking capacity

a value of the a.c. component of a residual prospective short-circuit current which a CBR can make, carry for its opening time and break under specified conditions of use and behaviour

B.3 Classification

- B.3.1 Classification according to the method of operation of the residual current function
- **B.3.1.1 CBR functionally independent of line voltage** (see B.2.3.2)
- **B.3.1.2 CBR functionally dependent on line voltage** (see B.2.3.3 and B.7.2.11)
- B.3.1.2.1 Opening automatically in the case of failure of the line voltage with or without delay.
- B.3.1.2.2 Not opening automatically in the case of failure of line voltage.
- **B.3.1.2.2.1** Able to trip in the case of a hazardous situation (e.g. due to an earth fault) arising on failure of line voltage:
- in the case of loss of one phase in a three-phase system;
- in the case of voltage drop.

NOTE Classification under this subclause also covers CBRs which are unable to open automatically when no hazardous situation exists.

B.3.1.2.2.2 Unable to trip in the case of a hazardous situation (e.g. due to an earth fault) arising on failure of line voltage.

B.3.2 Classification selon les possibilités de réglage du courant différentiel résiduel

B.3.2.1 DPR à courant différentiel résiduel de fonctionnement unique

B.3.2.2 DPR à réglages multiples de courant différentiel résiduel de fonctionnement (voir note de B.4.1.1)

- par échelons;
- par variation continue.

B.3.3 Classification selon la temporisation de la fonction courant différentiel résiduel

B.3.3.1 DPR sans temporisation: type non temporisé

- **B.3.3.2 DPR à temporisation: type temporisé** (voir B.2.3.8)
- B.3.3.2.1 DPR à temporisation non réglable

B.3.3.2.2 DPR à temporisation réglable

- par échelons;
- par variation continue.

B.3.4 Classification selon le comportement en présence d'une composante continue

- DPR du type AC (voir B.4.4.1);
- DPR du type A (voir B.4.4.2).

B.4 Caractéristiques des DPR pour leur fonction «courant différentiel résiduel»

B.4.1 Valeurs assignées

B.4.1.1 Courant différentiel résiduel de fonctionnement assigné $(I_{\Delta n})$

Valeur efficace du courant sinusoïdal différentiel résiduel de fonctionnement, assignée par le constructeur au DPR, et pour lequel celui-ci doit fonctionner dans des conditions spécifiées.

NOTE Pour un DPR à réglages multiples de courant différentiel résiduel de fonctionnement, on utilise le réglage le plus élevé pour désigner ses caractéristiques assignées. Voir cependant l'article B.5 concernant le marquage.

B.4.1.2 Courant différentiel résiduel de non-fontionnement assigné ($I_{\Delta no}$)

Valeur efficace du courant sinusoïdal différentiel résiduel de non-fonctionnement (voir B.2.2.5) assignée par le constructeur, pour laquelle le DPR ne fonctionne pas dans des conditions spécifiées.

B.4.1.3 Pouvoir assigné de fermeture et de coupure différentiel résiduel en court-circuit (I_{Am})

Valeur efficace de la composante alternative du courant différentiel résiduel de court-circuit présumé (voir B.2.4.2), assignée par le constructeur, que le DPR peut fermer, véhiculer et couper dans des conditions spécifiées.

B.3.2 Classification according to the possibility of adjusting the residual current

B.3.2.1 CBR with single rated residual operating current

B.3.2.2 CBR with multiple settings of residual operating current (see note to B.4.1.1)

- by fixed steps;
- by continuous variation.

B.3.3 Classification according to time-delay of the residual current function

B.3.3.1 CBR without time-delay: non-time-delayed type

B.3.3.2 CBR with time-delay: time-delayed type (see B.2.3.8)

B.3.3.2.1 CBR with non-adjustable time-delay

B.3.3.2.2 CBR with adjustable time-delay

- by fixed steps;
- by continuous variation.

B.3.4 Classification according to behaviour in presence of a d.c. component

- CBRs of type AC (see B.4.4.1);
- CBRs of type A (see B.4.4.2).

B.4 Characteristics of CBRs concerning their residual current function

B.4.1 Rated values

B.4.1.1 Rated residual operating current $(I_{\Delta n})$

The r.m.s. value of a sinusoidal residual operating current (see B.2.2.4) assigned to the CBR by the manufacturer, at which the CBR shall operate under specified conditions.

NOTE For a CBR with multiple settings of residual operating current, the highest setting is used to designate its rating. See, however, clause B.5 concerning marking.

B.4.1.2 Rated residual non-operating current ($I_{\Delta no}$)

The r.m.s. value of sinusoidal residual non-operating current (see B.2.2.5) assigned to the CBR by the manufacturer at which the CBR does not operate under specified conditions.

B.4.1.3 Rated residual short-circuit making and breaking capacity ($I_{\Delta m}$)

The r.m.s. value of the a.c. component of the prospective residual short-circuit current (see B.2.4.2) assigned to the CBR by the manufacturer, which the CBR can make, carry and break under specified conditions.

B.4.2 Valeurs préférentielles et valeurs limites

B.4.2.1 Valeurs préférentielles du courant différentiel résiduel de fonctionnement assigné $(I_{\Delta n})$

Les valeurs préférentielles du courant différentiel résiduel de fonctionnement assigné sont

$$0,006 \text{ A} - 0,01 \text{ A} - 0,03 \text{ A} - 0,1 \text{ A} - 0,3 \text{ A} - 0,5 \text{ A} - 1 \text{ A} - 3 \text{ A} - 10 \text{ A} - 30 \text{ A}$$

Des valeurs plus élevées peuvent être prescrites.

 $I_{\Delta n}$ peut s'exprimer en pourcentage du courant assigné.

B.4.2.2 Valeur minimale du courant différentiel résiduel de non-fonctionnement assigné $(I_{\Delta no})$

La valeur minimale du courant différentiel résiduel de non-fonctionnement assigné est $0.5 I_{\Lambda n}$.

B.4.2.3 Valeur limite de la surintensité de non-fonctionnement dans le cas d'une charge monophasée

La valeur limite de la surintensité de non-fonctionnement dans le cas d'une charge monophasée doit être conforme au B.7.2.7.

B.4.2.4 Caractéristiques de fonctionnement

B.4.2.4.1 Type non temporisé

La caractéristique de fonctionnement pour le type non temporisé est donnée au tableau B.1

Tableau B.1 – Caractéristique de fonctionnement pour le type non temporisé

Courant différentiel résiduel	$I_{\Delta n}$	$2I_{\Delta n}$	5/ _{∆n} 1)	10/ _{∆n} ²⁾	
Durée maximale de coupure s	0,3	0,15	0,04	0,04	
1) Pour les DPR ayant $I_{\Delta n} \le 30$ mA, 0,25 A peut être utilisé à la place de $5I_{\Delta n}$					
2) 0,5 A si 0,25 A est utilisé en accord avec la note ¹).					

Les DPR ayant $I_{\Delta n} \le 30$ mA doivent être du type non temporisé.

B.4.2.4.2 Type temporisé

B.4.2.4.2.1 Temps limite de non-réponse (voir B.2.3.7)

Pour un type temporisé, le temps limite de non-réponse est défini à $2I_{\Delta n}$ et doit être déclaré par le constructeur.

Le temps de non-réponse minimal à $2I_{\Delta n}$ est 0,06 s.

Les valeurs préférentielles de temps limite de non-réponse à $2I_{\Delta n}$ sont

$$0.06 \text{ s} - 0.1 \text{ s} - 0.2 \text{ s} - 0.3 \text{ s} - 0.4 \text{ s} - 0.5 \text{ s} - 1 \text{ s}.$$

Pour la protection contre les contacts indirects, le temps maximal de non-réponse à $I_{\Delta n}$ est 1 s (voir article 413.1 de la CEI 60364-4-41).

B.4.2 Preferred and limiting values

B.4.2.1 Preferred values of rated residual operating current $(I_{\Delta n})$

Preferred values of rated residual operating current are

$$0,006 \text{ A} - 0,01 \text{ A} - 0,03 \text{ A} - 0,1 \text{ A} - 0,3 \text{ A} - 0,5 \text{ A} - 1 \text{ A} - 3 \text{ A} - 10 \text{ A} - 30 \text{ A}$$

Higher values may be required.

 $I_{\Delta n}$ may be expressed as a percentage of the rated current.

B.4.2.2 Minimum value of rated residual non-operating current ($I_{\Delta no}$)

The minimum value of rated residual non-operating current is 0,5 $I_{\Delta n}$.

B.4.2.3 Limiting value of non-operating over-current in the case of a single-phase load

The limiting value of non-operating over-current in the case of a single-phase load shall be in accordance with B.7.2.7.

B.4.2.4 Operating characteristics

B.4.2.4.1 Non-time-delay type

The operating characteristic for a non-time-delay type is given in table B.1

Table B.1 – Operating characteristic for non-time-delay type

Residual current		$I_{\Delta {\sf n}}$	2 $I_{\Delta n}$	5/ _{∆n} 1)	10 <i>I</i> ∆n ²⁾
Maximum break time	S	0,3	0,15	0,04	0,04
1) = 000 + 1					

 $^{^{-1)}}$ For CBRs having $I_{\Delta {
m n}}$ \leq 30 mA, 0,25 A may be used as an alternative to 5 $I_{\Delta {
m n}}$

CBRs having $I_{\Delta n} \le 30$ mA shall be of the non-time-delay type.

B.4.2.4.2 Time-delay type

B.4.2.4.2.1 Limiting non-actuating time (see B.2.3.7)

For a time-delay type, the limiting non-actuating time is defined at $2I_{\Delta n}$ and shall be declared by the manufacturer.

The minimum limiting non-actuating time at $2I_{\Delta n}$ is 0,06 s.

Preferred values of limiting non-actuating time at $2I_{\Delta}$ are

$$0.06 \text{ s} - 0.1 \text{ s} - 0.2 \text{ s} - 0.3 \text{ s} - 0.4 \text{ s} - 0.5 \text{ s} - 1 \text{ s}.$$

For protection against indirect contact the maximum time-delay at $I_{\Delta n}$ is 1 s (see clause 413.1 of IEC 60364-4-41).

^{2) 0,5} A if 0,25 A is used according to note 1).

60947-2 © CEI:1995+A1:1997

+A2:2001

B.4.2.4.2.2 Caractéristiques de fonctionnement

Pour les DPR ayant un temps limite de non-réponse supérieur à 0,06 s, le constructeur doit déclarer les durées de coupure maximales pour $I_{\Delta n}$, $2I_{\Delta n}$, $5I_{\Delta n}$, et $10I_{\Delta n}$.

Pour les DPR ayant un temps limite de non-réponse de 0,06 s les caractéristiques de fonctionnement sont données au tableau B.2.

Tableau B.2 – Caractéristique de fonctionnement pour le type temporisé ayant un temps limite de non-réponse de 0,06 s

Courant différentiel résiduel	$I_{\Delta n}$	$2 t_{\Delta n}$	5/ _{∆n}	10/ _{∆n}
Durée maximale de coupure s	0,5	0,2	0,15	0,15

Dans le cas d'un DPR à caractéristique temps/courant inverse, le constructeur doit déclarer la caractéristique courant différentiel résiduel/durée de coupure.

B.4.3 Valeur du pouvoir assigné de fermeture et de coupure différentiel résiduel en court-circuit $(I_{\Delta m})$

La valeur minimale de $I_{\Delta m}$ est 25 % de I_{cu} .

Des valeurs supérieures peuvent être essayées et déclarées par le constructeur.

B.4.4 Caractéristiques de fonctionnement dans le cas d'un courant de défaut à la terre avec ou sans composante continue

B.4.4.1 DPR du type AC

DPR pour lequel le déclenchement est assuré pour des courants alternatifs sinusoïdaux différentiels résiduels, sans composante continue, appliqués soudainement ou de façon progressive.

B.4.4.2 DPR du type A

DPR pour lequel le déclenchement est assuré pour des courants alternatifs sinusoïdaux différentiels résiduels en présence de courants continus pulsatoires différentiels résiduels spécifiés, appliqués soudainement ou de façon progressive.

B.5 Marquage

- a) Les indications suivantes doivent être marquées sur les DPR intégrés (voir B.1.1), en plus des marquages spécifiés en 5.2 et être distinctement visibles après l'installation;
 - courant différentiel résiduel de fonctionnement assigné I_{∆n};
 - réglages du courant différentiel résiduel de fonctionnement, le cas échéant;
 - temps limite de non-réponse à 2 $I_{\Delta n}$, pour le type temporisé, par le symbole Δt suivi du temps limite de non-réponse en ms; en variante, dans le cas où le temps limite de non-réponse est 0,06 s, ce symbole peut être $\lceil s \rceil$ (S dans un carré);
 - le cas échéant, l'organe de manoeuvre du dispositif de contrôle, par la lettre T (voir aussi B.7.2.6);
 - caractéristique de fonctionnement en présence de courants différentiels résiduels avec ou sans composantes continues

DPR du type AC avec le symbole
DPR du type A avec le symbole

B.4.2.4.2.2 Operating characteristic

For CBR's having a limiting non-actuating time higher than 0,06 s, the manufacturer shall declare the maximum break time at $I_{\Delta n}$, 2 $I_{\Delta n}$, 5 $I_{\Delta n}$, and 10 $I_{\Delta n}$.

For CBR's having limiting non-actuating time of 0,06 s the operating characteristic is given in table B.2.

Table B.2 – Operating characteristic for time-delay-type having a limiting non-actuating time of 0,06 s

Residual current		$I_{\Delta n}$	2 $I_{\Delta n}$	5l∆n	10 <i>I</i> ∆n
Maximum break time	8	0,5	0,2	0,15	0,15

In the case of a CBR having an inverse current/time characteristic, the manufacturer shall state the residual current/break time characteristic.

B.4.3 Value of the rated residual short-circuit making and breaking capacity (I_{Am})

The minimum value of $I_{\Delta m}$ is 25 % of I_{cu} .

Higher values may be tested and declared by the manufacturer.

B.4.4 Operating characteristics in case of an earth fault current in the presence or absence of a d.c. component

B.4.4.1 CBR of type AC

A CBR for which tripping is ensured for residual sinusoidal alternating currents, in the absence of a d.c. component whether suddenly applied or slowly rising.

B.4.4.2 CBR of type A

A CBR for which tripping is ensured for residual sinusoidal alternating currents in the presence of specified residual pulsating direct currents, whether suddenly applied or slowly rising.

B.5 Marking

- a) The following data shall be marked on integral CBRs (see B.1.1), in addition to the marking specified in 5.2, and be clearly visible in the installed position:
 - rated residual operating current $I_{\Delta n}$;
 - settings of residual operating current, when applicable;
 - limiting non-actuating time at 2 $I_{\Delta n}$, for time-delay type, by the symbol Δt followed by the limiting non-actuating time in ms; alternatively, where the limiting non-actuating time is 0,06 s, the symbol may be S (S in a square);
 - where applicable, the operating means of the test device by the letter T (see also B.7.2.6);
 - operating characteristic in case of residual currents in the presence or absence of a d.c. component;

for CBRs of type AC with the symbol \sim

for CBRs of type A with the symbol

- b) Les indications suivantes doivent être marquées sur les unités c.r. et être distinctement visibles après l'installation:
 - tension(s) assignée(s) si elle(s) diffère(nt) de celle(s) du disjoncteur;
 - valeur (ou domaine de valeurs) de la fréquence assignée si elle diffère de celle du disjoncteur;
 - l'indication I_n ≤ ...A (I_n étant le courant assigné maximal du disjoncteur auquel l'unité c.r. peut être associée);
 - courant différentiel résiduel de fonctionnement assigné $I_{\Delta n}$;
 - réglages du courant différentiel résiduel de fonctionnement, le cas échéant;
 - temps limite de non-réponse, comme spécifié au point a);
 - organe de manoeuvre du dispositif de contrôle, comme spécifié au point a);
 - caractéristique de fonctionnement en présence de courants différentiels résiduels avec ou sans composantes continues

DPR du type AC avec le symbole

DPR du type A avec le symbole

- c) Les indications suivantes doivent être marquées sur les unités c.r. et être distinctement visibles après assemblage avec le disjoncteur:
 - nom du constructeur ou marque de fabrique;
 - désignation du type ou numéro de série;
 - identification du (des) disjoncteur(s) avec le(s)quel(s) l'unité c.r. peut être assemblée, sauf si un assemblage incorrect (rendant la protection inopérante) est impossible par suite de sa conception;
 - CEI 60947-2.
- d) Les indications suivantes doivent être marquées sur les DPR intégrés ou les unités c.r., selon le cas, ou figurer dans la documentation du constructeur:
 - pouvoir assigné de fermeture et de coupure différentiel résiduel en court-circuit $I_{\Delta m}$ s'il est supérieur à 25 % de I_{cu} (voir B.4.3);
 - schéma des connexions, y compris celles du circuit d'essai et, si applicable, celles de la ligne pour les DPR dépendant de la tension de la ligne;
 - valeur du courant différentiel résiduel de non-fonctionnement assigné $I_{\Delta no}$ s'il est supérieur à 0,5 $I_{\Delta n}$.

B.6 Conditions normales de service, de montage et de transport

L'article 6 est applicable.

B.7 Prescriptions relatives à la conception et au fonctionnement

B.7.1 Prescriptions pour la conception

Il ne doit pas être possible de modifier la caractéristique de fonctionnement d'un DPR par des moyens autres que ceux spécifiquement destinés au réglage du courant différentiel résiduel de fonctionnement assigné ou de la temporisation définie.

- b) The following data shall be marked on r.c. units and be clearly visible in the installed position:
 - rated voltage(s) if different from the rated voltage(s) of the circuit-breaker;
 - value (or range) of the rated frequency if different from that of the circuit-breaker;
 - the indication $I_n \le ...A$ (I_n being the maximum current rating of the circuit-breaker with which the r.c. unit may be combined);
 - rated residual operating current $I_{\Delta n}$;
 - settings of residual operating current, when applicable;
 - limiting non-actuating time, as specified in item a);
 - the operating means of the test device, as specified in item a);
 - operating characteristic in case of residual currents in the presence or absence of a d.c. component:

for CBRs of type A with the symbol for CBRs of type AC with the symbol

- c) The following data shall be marked on r.c. units and be visible after assembly with the circuit-breaker:
 - manufacturer's name or trade mark;
 - type designation or serial number;
 - identification of the circuit-breaker(s) with which the r.c. unit may be assembled, unless incorrect assembly (such as to render the protection ineffective) is made impossible by the design;
 - IEC 60947-2.
- d) The following data shall be marked on integral CBRs or r.c. units, as applicable, or made available in the manufacturer's literature:
 - rated residual short-circuit making and breaking capacity $I_{\Delta m}$ if higher than 25 % of I_{cu} (see B.4.3);
 - diagram of connections, including those of the test circuit and, if applicable, those to the line, for CBRs dependent on the line voltage;
 - value of rated residual non-operating current $I_{\Delta no}$ if greater than 0,5 $I_{\Delta n}$.

B.6 Normal service, mounting and transport conditions

Clause 6 applies.

B.7 Design and operating requirements

B.7.1 Design requirements

It shall not be possible to modify the operating characteristic of a CBR except by means which are specifically provided for setting the rated residual operating current or the definite time-delay.

- 162 - 60947-2 © CEI:1995+A1:1997 +A2:2001

Les DPR combinant une unité c.r. appropriée et un disjoncteur associé doivent être conçus et réalisés de manière telle que:

- l'assemblage de l'unité c.r. adaptable et du disjoncteur associé ne demande aucune liaison mécanique et/ou électrique nuisible à l'installation ou présentant des risques pour l'utilisateur;
- l'adjonction de l'unité c.r. adaptable ne doit en aucune manière compromettre le fonctionnement normal ou les performances du disjoncteur;
- l'unité c.r. n'est pas endommagée de façon permanente à la suite des courants de courtcircuit au cours des séquences d'essais.

B.7.2 Prescriptions de fonctionnement

B.7.2.1 Fonctionnement en cas de courant différentiel résiduel

Le DPR doit s'ouvrir automatiquement lors de l'apparition de tout courant de fuite ou de courant à la terre égal ou supérieur au courant différentiel résiduel de fonctionnement assigné pendant une durée supérieure au temps limite de non-réponse.

La manoeuvre du DPR doit être conforme aux prescriptions de durée de B.4.2.4. La conformité à ces prescriptions doit être vérifiée par les essais de B.8.2.

B.7.2.2 Pouvoir assigné de fermeture et de coupure différentiel résiduel en court-circuit I_{∆m}

Les DPR doivent satisfaire aux prescriptions d'essai de B.8.10.

B.7.2.3 Aptitude au fonctionnement en service

Le DPR doit satisfaire aux essais de B.8.1.1.1.

B.7.2.4 Effets des conditions d'environnement

Les DPR doivent fonctionner de manière satisfaisante, compte tenu des effets des conditions d'environnement.

La conformité à cette prescription est vérifiée par les essais de B.8.11.

B.7.2.5 Propriétés diélectriques

Les DPR doivent satisfaire aux essais de B.8.3.

B.7.2.6 Dispositif de contrôle

Les DPR prévus pour assurer la protection contre les chocs électriques doivent être munis d'un dispositif de contrôle permettant au dispositif de détection d'être traversé par un courant simulant un courant différentiel résiduel, afin de permettre de vérifier périodiquement de l'aptitude au fonctionnement des DPR.

Le dispositif de contrôle doit satisfaire aux essais de B.8.4.

Aucune tension ne doit apparaître sur le conducteur de protection, lorsqu'il existe, lors du fonctionnement du dispositif de contrôle.

Il ne doit pas être possible d'alimenter le circuit protégé par la manoeuvre du dispositif de contrôle lorsque le DPR est en position d'ouverture.

+A2:2001

CBRs combining a r.c. unit device and a circuit-breaker shall be so designed and built that:

- the coupling system of the r.c. unit and the associated circuit-breaker does not require any
 mechanical and/or electrical connection that may adversely affect the installation or result
 in injury to the user;
- the addition of the r.c. unit does not adversely affect in any way either the normal operation or the performance capabilities of the circuit-breaker;
- the r.c. unit does not sustain any permanent damage due to the short-circuit currents during test sequences.

B.7.2 Operating requirements

B.7.2.1 Operation in case of a residual current

The CBR shall be open automatically in response to any earth leakage current or earth fault current equal to or exceeding the rated residual operating current for a time exceeding the non-actuating time.

The operation of the CBR shall be in compliance with the time requirements specified in B.4.2.4. Compliance shall be checked by the tests of B.8.2.

B.7.2.2 Rated residual current short-circuit making and breaking capacity I_{Am}

CBRs shall meet the test requirements of B.8.10.

B.7.2.3 Operational performance capability

CBRs shall comply with the tests of B.8.1.1.1.

B.7.2.4 Effects of environmental conditions

CBRs shall operate satisfactorily, taking into account the effects of environmental conditions.

Compliance is checked by the test of B.8.11.

B.7.2.5 Dielectric properties

CBRs shall withstand the tests of B.8.3.

B.7.2.6 Test device

CBRs intended for protection against electric shock shall be provided with a test device causing the passing through the detecting device of a current simulating a residual current, in order to allow periodic testing of the ability of the CBRs to operate.

The test device shall satisfy the tests of B.8.4.

The protective conductor, if any, shall not become live when the test device is operated.

It shall not be possible to energize the protected circuit by operating the test device when the CBR is in the open position.

+A2:2001

Le dispositif de contrôle ne doit pas être le seul moyen d'effectuer la manoeuvre d'ouverture et n'est pas prévu pour cette fonction.

L'organe de manoeuvre du dispositif de contrôle doit être désigné par la lettre T et sa couleur ne doit être ni rouge ni verte; il convient d'employer, de préférence, une couleur claire.

NOTE Le dispositif de contrôle n'est destiné qu'à vérifier la fonction de déclenchement, et non la valeur à laquelle cette fonction s'accomplit, par rapport au courant différentiel résiduel de fonctionnement assigné et les durées de coupure.

B.7.2.7 Valeur du courant de surcharge de non-fonctionnement pour un circuit de charge monophasé

Les DPR doivent supporter sans déclencher la plus faible des deux valeurs suivantes de surintensité:

- $-6 I_{0}$;
- 80 % de la valeur maximale de réglage du déclencheur de court-circuit.

La conformité à cette prescription est vérifiée par l'essai de B.8.5.

Cependant cet essai n'est pas nécessaire dans le cas de DPR de catégorie d'emploi B puisque les prescriptions de ce paragraphe sont vérifiées pendant la séquence d'essais IV (ou la séquence d'essais combinée).

NOTE Les essais pour les circuits de charge polyphasés en régime équilibré ne sont pas nécessaires car ils sont estimés être satisfaits par les prescriptions de ce paragraphe.

B.7.2.8 Résistance des DPR aux déclenchements intempestifs dus à des ondes de courant causées par des tensions de choc

B.7.2.8.1 Résistance aux déclenchements intempestifs dans le cas de charge de capacité de réseau

Les DPR doivent satisfaire à l'essai de B.8.6.1.

B.7.2.8.2 Résistance aux déclenchements intempestifs dans le cas d'amorçage sans courant de suite

Les DPR doivent satisfaire à l'essai de B.8.6.2.

B.7.2.9 Comportement des DPR du type A en cas de courant de défaut à la terre comprenant une composante continue

Le comportement des DPR en cas de courant de défaut à la terre comprenant une composante continue, doit être tel que les temps maximaux de coupure définis dans les tableaux B.1 et B.2, selon le cas, doivent être respectés, les valeurs du courant d'essai spécifiées étant cependant multipliées

- par le facteur 1,4 pour les DPR ayant $I_{\Delta n} > 0,015$ A et
- par le facteur 2 pour les DPR ayant $I_{\Delta n} \le 0,015$ A (ou 0,03 A, celle qui est la plus élevée).

La conformité est vérifiée par les essais de B.8.7.

The test device shall not be the sole means of performing the opening operation and is not intended to be used for this function.

The operating means of the test device shall be designated by the letter T, and its colour shall not be red or green; a light colour should preferably be used.

NOTE The test device is only intended to check the tripping function, not the value at which the function is effective with respect to the rated residual operating current and to the break time.

B.7.2.7 Value of the non-operating over-current in the case of a single-phase load

CBRs shall withstand the smaller of the following two over-current values without tripping:

- $-6 I_{n}$;
- 80 % of the maximum short-circuit release current setting.

Compliance is checked by the test of B.8.5.

However this test is not necessary in the case of CBRs of utilization category B since the requirements of this subclause are verified during test sequence IV (or the combined test sequence).

NOTE Tests for polyphase balanced loads are not necessary since they are considered to be covered by the requirements of this subclause.

B.7.2.8 Resistance of CBRs to unwanted tripping due to surge currents resulting from impulse voltages

B.7.2.8.1 Resistance to unwanted tripping in case of loading of the network capacitance

CBRs shall withstand the test of B.8.6.1.

B.7.2.8.2 Resistance to unwanted tripping in case of flashover without follow-on current

CBRs shall withstand the test of B.8.6.2.

B.7.2.9 Behaviour of CBRs of type A in case of an earth fault comprising a d.c. component

The behaviour of CBRs in case of an earth fault current comprising a d.c. component, shall be such that the maximum break times stated in tables B.1 and B.2, as applicable, shall also be valid, the test current values specified being, however, increased

- by the factor 1,4 for CBRs having $I_{\Delta n} > 0.015$ A
- by the factor 2 for CBRs having $I_{\Delta n}$ ≤ 0,015 A (or 0,03 A, whichever is the higher).

Compliance is checked by the tests of B.8.7.

B.7.2.10 Conditions de fonctionnement des DPR avec unités c.r. à réarmement

Il ne doit pas être possible de remettre en position de fermeture après déclenchement dû à un courant différentiel résiduel, les DPR avec unités c.r. à réarmement (voir B.2.3.9) s'ils n'ont pas été réarmés.

– 166 **–**

La conformité est vérifiée pendant l'essai de 8.3.3.3.4 en accord avec B.8.1.1.1.

B.7.2.11 Prescriptions supplémentaires relatives aux DPR fonctionnellement dépendants de la tension d'alimentation

Les DPR fonctionnellement dépendants de la tension d'alimentation doivent fonctionner correctement à toute valeur de la tension d'alimentation comprise entre 0,85 et 1,1 fois sa valeur assignée.

La conformité à cette prescription est vérifiée par les essais de B.8.2.3.

Lorsqu'un DPR a plus d'une fréquence assignée ou une gamme de fréquences assignées, le DPR doit être capable de fonctionner en accord avec ce paragraphe à toutes les fréquences. La conformité est vérifiée en effectuant les essais de B.8.2 et B.8.4.

Suivant leur classification, les DPR fonctionnellement dépendants de la tension d'alimentation doivent satisfaire aux prescriptions figurant au tableau B.3.

Tableau B.3 – Prescriptions pour les DPR fonctionnellement dépendants de la tension d'alimentation

Classification de l'appareil sulvant B.3.1		Comportement en cas de défaillance de la tension d'allmentation	
DPR s'ouvrant automatiquement en cas de défaillance de la tension	Sans retard	Ouverture sans retard suivant B.8.8.2, point a)	
d'alimentation (B.3.1.2.1)	Avec retard	Ouverture à retard suivant B.8.8.2, point b)	
DPR ne s'ouvrant pas automatiquement en cas de défaillance de la tension d'alimentation (B.3.1.2.2)		Pas d'ouverture	
DPR ne s'ouvrant pas automatiquement en cas de défaillance de la tension d'alimentation mais capable de s'ouvrir en cas de situation dangereuse (B.3.1.2.2.1)		Ouverture suivant B.8.9	

B.7.2.12 Immunité aux phénomènes à haute fréquence

B.7.2.12.1 Transitoires électriques rapides en salves – mode commun

Le DPR doit satisfaire aux prescriptions de la CEI 61000-4-4, niveau 4, c'est-à-dire

- 4 kV sur les bornes d'alimentation;
- 2 kV sur les bornes d'entrée/sortie.

Les essais sont faits en accord avec B.8.12.1.

+A2:2001

B.7.2.10 Conditions of operation for CBRs with resettable r.c. units

It shall not be possible to reclose CBRs having resettable r.c. units (see B.2.3.9) after tripping due to a residual current, if they have not been reset.

Compliance is checked during the test of 8.3.3.3.4 in accordance with B.8.1.1.1.

B.7.2.11 Additional requirements for CBRs functionally dependent on line voltage

CBRs functionally dependent on line voltage shall operate correctly at any value of the line voltage between 0,85 and 1,1 times its rated value.

Compliance is checked by the tests of B.8.2.3.

Where a CBR has more than one rated frequency or a range of rated frequencies, the CBR shall be capable of operating in accordance with this subclause at all frequencies. Compliance is verified by carrying out the tests of B.8.2 and B.8.4.

According to their classification CBRs functionally dependent on line voltage shall comply with the requirements given in table B.3.

Table B.3 – Requirements for CBRs functionally dependent on line voltage

Classification of the device according to B.3.1		Behaviour in case of failure of line voltage
CBRs opening automatically in the case	Without delay	Opening without delay according to item a) of B.8.8.2
of failure of the line voltage (B.3.1.2.1) With delay		Opening with delay according to item b) of B.8.8.2
CBRs not opening automatically in the case of failure of the line voltage (B.3.1.2.2)		No opening
CBRs not opening automatically in the case of failure of the line voltage but able to open in the case of a hazardous situation arising (B.3.1.2.2.1)		Opening according to B.8.9

B.7.2.12 Immunity to high frequency phenomena

B.7.2.12.1 Electrical fast transients/bursts - common mode

The CBR shall comply with the requirements of IEC 61000-4-4, level 4, i.e.

- 4 kV on power supply ports;
- 2 kV on input/output ports.

Tests are made in accordance with B.8.12.1.

B.7.2.12.2 Immunité aux ondes de choc

Le DPR doit satisfaire aux prescriptions de la CEI 61000-4-5, sauf que les tensions d'essai doivent être

entre phases: 4 kV;

entre phases et terre: 4 kV.

NOTE La nécessité pour des tensions d'essai plus élevées est à l'étude.

Les essais sont faits en accord avec B.8.12.2.

B.7.2.12.3 Champ électromagnétique rayonné aux fréquences radioélectriques

Le DPR doit satisfaire aux prescriptions de la CEI 61000-4-3, niveau 3, c'est-à-dire 10 V/m.

Les essais doivent être faits en accord avec B.8.12.3.

B.7.2.12.4 Immunité aux perturbations conduites induites par des champs aux fréquences radioélectriques

A l'étude selon la CEI 61000-4-6.

B.7.2.13 Immunité aux décharges électrostatiques

Norme de référence: CEI 61000-4-2.

L'essai doit être effectué par décharge au contact selon la CEI 61000-4-2, niveau 4, la tension correspondante étant 8 kV.

L'essai doit être effectué en accord avec B.8.13.

B.7.2.14 Immunité aux variations de tension

Norme de référence: CEI 61000-4-11.

L'immunité aux variations de tension est couverte par les prescriptions de B.7.2.11.

B.7.3 Vérification des émissions à fréquences radioélectriques

Le paragraphe 7.3.3.2 de la CEI 60947-1 est applicable. Le DPR doit satisfaire aux prescriptions du tableau 18 ou du tableau 19 de la CEI 60947-1, selon le cas.

Les essais doivent être faits en accord avec B.8.14.

B.8 Essais

Cet article spécifie les essais pour les DPR de courant différentiel résiduel de fonctionnement assigné $I_{\Delta n}$ inférieur ou égal à 30 A.

La validité des essais spécifiés dans cet article lorsque $I_{\Delta n} > 30$ A fait l'objet d'un accord entre le constructeur et l'utilisateur.

Les instruments pour la mesure du courant différentiel résiduel doivent être au moins de la classe 0,5 (voir la CEI 60051) et doivent indiquer (ou permettre de déterminer) la valeur efficace vraie.

60947-2 © IEC:1995+A1:1997 - 169 - +A2:2001

B.7.2.12.2 Surge immunity

The CBR shall comply with the requirements of IEC 61000-4-5, except that the test voltages shall be

line to line: 4 kV;

line to earth: 4 kV.

NOTE The need for higher test voltages is under consideration.

Tests are made in accordance with B.8.12.2.

B.7.2.12.3 Radiated radiofrequency electromagnetic field

The CBR shall comply with the requirements of IEC 61000-4-3, level 3, i.e. 10 V/m.

Tests shall be made in accordance with B.8.12.3.

B.7.2.12.4 Immunity to conducted disturbances induced by radiofrequency fields

Under consideration, according to IEC 61000-4-6.

B.7.2.13 Immunity to electrostatic discharges

Reference standard: IEC 61000-4-2.

The test shall be made by contact discharge according to IEC 61000-4-2, level 4, the corresponding voltage being 8 kV.

The test shall be made in accordance with B.8.13.

B.7.2.14 Immunity to voltage variation

Reference standard: IEC 61000-4-11.

Immunity to voltage variation is covered by the requirements of B.7.2.11.

B.7.3 Verification of radio frequency emissions

Subclause 7.3.3.2 of IEC 60947-1 applies. The CBR shall comply with the requirements of table 19 of IEC 60947-1, as applicable.

The tests shall be made in accordance with B.8.14.

B.8 Tests

This clause specifies tests for CBRs having a rated residual operating current $I_{\Delta n}$ up to and including 30 A.

The applicability of the tests specified in this clause when $I_{\Delta n} > 30$ A is subject to agreement between manufacturer and user.

The instruments for the measurement of the residual current shall be at least class 0,5 (see IEC 60051) and shall show (or permit to determine) the true r.m.s. value.

Les instruments de mesure du temps doivent avoir une erreur relative ne dépassant pas 10 % de la valeur mesurée.

B.8.1 Généralités

Les essais spécifiés dans cette annexe sont des essais de type s'ajoutant à ceux de l'article 8.

Les DPR doivent être soumis à toutes les séquences d'essais de l'article 8 qui leur sont applicables. Pour les vérifications de la tenue diélectrique au cours de ces séquences d'essais, le circuit de commande des dispositifs différentiels résiduels fonctionnellement dépendants de la tension d'alimentation peuvent être déconnectés du circuit principal (voir 8.3.3.2.2).

Les essais doivent être effectués avec des courants substantiellement sinusoïdaux.

Pour les DPR comprenant une unité c.r. distincte et un disjoncteur, l'ensemble doit être réalisé conformément aux instructions du constructeur.

Dans le cas des DPR ayant plusieurs réglages du courant différentiel résiduel de fonctionnement, les essais doivent, sauf spécification contraire, être effectués au réglage le plus bas.

Dans le cas des DPR à temporisation réglable (voir B.3.3.2.2), la temporisation doit, sauf spécification contraire, être réglée à son maximum.

B.8.1.1 Essais à effectuer au cours des séguences d'essais de l'article 8

B.8.1.1.1 Aptitude au fonctionnement en service

Au cours des cycles de manoeuvres avec courant (voir 8.3.3.3.4) spécifiés au tableau 8 (voir 7.2.4.2), un tiers des manoeuvres de coupure doit être réalisé par la manoeuvre du dispositif de contrôle et un autre tiers en appliquant à l'un des pôles un courant différentiel résiduel de valeur $I_{\Delta n}$ (ou, le cas échéant, de valeur égale au réglage le plus bas du courant différentiel résiduel de fonctionnement).

Dans le cas d'un DPR avec des unités c.r. à réarmement, il doit être vérifié qu'il n'est pas possible de refermer le DPR après déclenchement sans manoeuvre intentionnelle de réarmement. Cette vérification doit être faite au début et à la fin de l'essai d'aptitude au fonctionnement en service avec courant (8.3.3.3.4).

Aucun défaut de déclenchement ne doit être admis.

B.8.1.1.2 Vérification de l'aptitude à supporter les courants de court-circuit

B.8.1.1.2.1 Pouvoir assigné de coupure de service de court-circuit (séquence d'essais II)

Après les essais de 8.3.4, la vérification du fonctionnement correct du DPR en cas de courant différentiel résiduel doit être effectuée conformément à B.8.2.4.1.

B.8.1.1.2.2 Pouvoir assigné de coupure ultime en court-circuit (séquence d'essais III)

Pour vérifier le fonctionnement correct des relais de surcharge, les essais sur un seul pôle spécifiés en 8.3.5.1 et 8.3.5.4 doivent être remplacés par des essais sur deux pôles sur toutes les combinaisons possibles des pôles de phase, à tour de rôle, les conditions d'essai étant celles spécifiées en 8.3.5.1 et 8.3.5.4, mais applicables à deux pôles.

Après les essais de 8.3.5, la vérification du fonctionnement correct du DPR doit être effectuée conformément à B.8.2.4.3.

The instruments for the measurement of time shall have a relative error not greater than 10 % of the measured value.

B.8.1 General

Tests specified in this annex are type tests and are supplementary to the tests of clause 8.

CBRs shall be submitted to all relevant test sequences of clause 8. For the dielectric withstand verifications during these test sequences the control circuit of residual current devices functionally dependent on line voltage may be disconnected from the main circuit (see 8.3.3.2.2).

The tests shall be made with substantially sinusoidal currents.

For CBRs comprising a separate r.c. unit and a circuit-breaker, the assembly shall be performed in compliance with the manufacturer's instructions.

In the case of CBRs with multiple settings of residual operating current, the tests shall be made at the lowest setting, unless otherwise stated.

In the case of CBRs with adjustable time-delay (see B.3.3.2.2) the time-delay shall be set at maximum, unless otherwise stated.

B.8.1.1 Tests to be made during the test sequences of clause 8

B.8.1.1.1 Operational performance capability

During the operating cycles with current (see 8.3.3.3.4) specified in table 8 (see 7.2.4.2), a third of the breaking operations shall be performed by actuating the test device, and a further third by applying a residual current of value $I_{\Delta n}$ (or, if applicable, of the lowest setting of the residual operating current) to any one pole.

In the case of a CBR with a resettable r.c. unit, it shall be verified that it is not possible to reclose the CBR after tripping without the intentional resetting action. This verification shall take place at the beginning and at the end of the operational performance capability test with current (8.3.3.3.4).

No failure to trip shall be admitted.

B.8.1.1.2 Verification of the withstand capability to short-circuit currents

B.8.1.1.2.1 Rated service short-circuit breaking capacity (test sequence II)

Following the tests of 8.3.4, verification of the correct operation of the CBR in case of residual current shall be performed in accordance with B.8.2.4.1.

B.8.1.1.2.2 Rated ultimate short-circuit breaking capacity (test sequence III)

For the purpose of verifying the correct operation of the overload releases, the single pole tests specified in 8.3.5.1 and 8.3.5.4 shall be replaced by two-pole tests, on all possible combinations of phase poles in turn, the test conditions being as specified in 8.3.5.1 and 8.3.5.4 but applicable to two poles.

Following the tests of 8.3.5, verification of the correct operation of the CBR shall be performed in accordance with B.8.2.4.3.

- 172 - 60947-2 © CEI:1995+A1:1997 +A2:2001

B.8.1.1.2.3 Courant assigné de courte durée admissible (séquence d'essais IV ou séquence d'essais combinée)

- a) Comportement pendant l'essai au courant assigné de courte durée admissible Aucun déclenchement ne doit se produire pendant l'essai de 8.3.6.2 ou 8.3.8.2, selon le cas.
- b) Vérification des déclencheurs de surcharge
 - Pour la séquence d'essais IV

Afin de vérifier le fonctionnement correct des relais de surcharge selon 8.3.6.1 et 8.3.6.6, les essais sur un seul pôle spécifiés en 8.3.5.1 doivent être remplacés par des essais sur deux pôles effectués selon toutes les combinaisons possibles des pôles de phase à tour de rôle.

- Pour la séquence d'essais combinée

Afin de vérifier le fonctionnement correct des relais de surcharge selon 8.3.8.1 l'essai sur seul pôle spécifié en 8.3.5.1 doit être remplacé par des essais sur deux pôles effectués selon toutes les combinaisons possibles de pôles de phase à tour de rôle.

Afin de vérifier le fonctionnement correct des relais de surcharge selon 8.3.8.6, l'essai spécifié en 8.3.3.7 doit être effectué en utilisant une alimentation triphasée.

c) Vérification du dispositif de déclenchement au courant différentiel résiduel

Après les essais de 8.3.6 ou 8.3.8, selon le cas, la vérification du dispositif de déclenchement au courant différentiel résiduel est effectué selon B.8.2.4.3.

B.8.1.1.2.4 Disjoncteurs à fusibles incorporés (séquence d'essais V)

Pour vérifier le fonctionnement correct des relais de surcharge, les essais sur un seul pôle spécifiés en 8.3.7.4 et 8.3.7.8 doivent être remplacés par des essais sur deux pôles sur toutes les combinaisons possibles des pôles de phase à tour de rôle, les conditions d'essai étant celles spécifiées en 8.3.7.4 et 8.3.7.8, mais applicables à deux pôles.

Après les essais de 8.3.7, la vérification du fonctionnement correct du DPR doit être effectuée conformément à B.8.2.4.3.

B.8.1.1.2.5 Séquence d'essais combinée

Après les essais de 8.3.8, la vérification du fonctionnement correct du DPR doit être effectuée conformément à B.8.2.4.3.

B.8.1.2 Séquences d'essais supplémentaires

Des séquences d'essais supplémentaires doivent être effectuées sur les DPR, conformément au tableau B.4.

B.8.1.1.2.3 Rated short-time withstand current (test sequence IV or combined test sequence)

a) Behaviour during rated short-time withstand current test

No tripping shall occur during the test of 8.3.6.2 or 8.3.8.2, as applicable.

- b) Verification of overload releases
 - For test sequence IV

For the purpose of verifying the correct operation of the overload releases in accordance with 8.3.6.1 and 8.3.6.6, the single pole tests specified in 8.3.5.1 shall be replaced by two-pole tests, made on all possible combinations of phase poles in turn.

- For the combined test sequence

For the purpose of verifying the correct operation of the overload releases in accordance with 8.3.8.1, the single pole test specified in 8.3.5.1 shall be replaced by two-pole tests made on all possible combinations of phase poles in turn.

For the purpose of verifying the correct operation of overload releases in accordance with 8.3.8.6, the test specified in 8.3.3.7 shall be made using a three-phase supply.

c) Verification of the residual current tripping device

Following the tests of 8.3.6 or 8.3.8, as applicable, verification of the residual current tripping device shall be performed in accordance with B.8.2.4.3.

B.8.1.1.2.4 Integrally fused circuit-breakers (test sequence V)

For the purpose of verifying the correct operation of the overload releases, the single-pole tests specified in 8.3.7.4 and 8.3.7.8 shall be replaced by two-pole tests, on all possible combinations of phase poles in turn, the test conditions being as specified in 8.3.7.4 and 8.3.7.8 but applicable to two poles.

Following the tests of 8.3.7, verification of the correct operation of the CBR shall be performed in accordance with B.8.2.4.3.

B.8.1.1.2.5 Combined test sequence

Following the tests of 8.3.8, verification of the correct operation of the CBR shall be performed in accordance with B.8.2.4.3.

B.8.1.2 Additional test sequences

Additional test sequences shall be performed on CBRs in accordance with table B.4.

Tableau B.4 – Séquences d'essais supplémentaires

Séquence d'essais	Essais	Paragraphes
	Caractéristiques de fonctionnement	B.8.2
	Propriétés diélectriques	B.8.3
	Fonctionnement du dispositif de contrôle aux limites de la tension assignée	B.8.4
	Valeur limite du courant de non-fonctionnement en conditions de surintensités	B.8.5
ВІ	Résistance aux déclenchements intempestif dus à des ondes de courant causées par des ondes de choc	B.8.6
	Comportement en cas de courant de défaut à la terre comprenant une composante continue	B.8.7
	Comportement en cas de défaut de la tension d'alimentation pour les DPR classifiés selon B.3.1.2.1	B.8.8
	Comportement en cas de défaut de la tension d'alimentation pour les DPR classifiés selon B.3.1.2.2.1	B.8.9
ВІІ	Pouvoir assigné de coupure et de fermeture différentiel résiduel en court-circuit $(I_{\rm Am})$	B.8.10
B III	Effets des conditions d'environnement	B.8.11
	Immunité aux phénomènes à haute fréquence	B.8.12
BIV	Immunité aux décharges électrostatiques	B.8.13
	Emissions à fréquences radioélectriques	B.8.14

Un échantillon doit être essayé pour chacune des séquences d'essais B I, B II et B III.

Pour la séquence d'essais B IV, un nouvel échantillon peut être essayé pour chaque essai ou un seul échantillon peut être utilisé pour plusieurs essais, selon la volonté du constructeur.

Séquence d'essai B I

B.8.2 Vérification de la caractéristique de fonctionnement

B.8.2.1 Circuit d'essai

Le DPR est installé comme en service normal.

Le circuit d'essai doit être conforme à la figure B.1.

B.8.2.2 Tension d'essai pour les DPR fonctionnellement indépendants de la tension d'alimentation

Les essais peuvent être effectués sous toute tension convenable.

B.8.2.3 Tension d'essai pour les DPR fonctionnellement dépendants de la tension d'alimentation

Les essais doivent être effectués aux valeurs suivantes de la tension appliquée aux bornes correspondantes:

- 0,85 fois la tension assignée minimale pour les essais spécifiés en B.8.2.4 et B.8.2.5.1;
- 1,1 fois la tension assignée maximale pour les essais spécifiés en B.8.2.5.2.

Les DPR ayant plus d'une fréquence assignée ou une gamme de fréquences assignées doivent être essayés à la fréquence assignée la plus élevée et à la fréquence assignée la plus basse dans chaque cas. Cependant, pour les DPR ayant des fréquences assignées égales à 50 Hz et 60 Hz, les essais à 50 Hz ou à 60 Hz sont considérés comme couvrant les prescriptions.

Table B.4 - Additional test sequences

Sequences	Test	Subclause
	Operating characteristic	B.8.2
	Dielectric properties	B.8.3
	Operation of the test device at the limits of rated voltage	B.8.4
	Limiting value of the non-operating current under over-current conditions	B.8.5
ВІ	Resistance against unwanted tripping due to surge currents resulting from impulse voltages	B.8.6
	Behaviour in the case of an earth fault current comprising a d.c. component	B.8.7
	Behaviour in the case of failure of line voltage for CBRs classified under B.3.1.2.1	B.8.8
	Behaviour in the case of failure of line voltage for CBRs classified under B.3.1.2.2.1	B.8.9
B II	Residual short-circuit making and breaking capacity ($I_{\Delta m}$)	B.8.10
B III	Effects of environmental conditions	B.8.11
	Immunity to high frequency phenomena	B.8.12
B IV	Immunity to electrostatic discharges	B.8.13
	Radiofrequency emissions	B.8.14

One sample shall be tested for each of test sequences BI, BII and BIII.

For test sequence B IV, a new sample may be used for each test, or one sample may be used for several tests, at the manufacturer's discretion.

Test sequence B I

B.8.2 Verification of the operating characteristic

B.8.2.1 Test circuit

The CBR is installed as in normal use.

The test circuit shall be in accordance with figure B.1.

B.8.2.2 Test voltage for CBRs functionally independent of line voltage

Tests may be made at any convenient voltage.

B.8.2.3 Test voltage for CBRs functionally dependent on line voltage

Tests shall be made at the following values of voltage applied to the relevant terminals:

- 0,85 times the minimum rated voltage for the tests specified in B.8.2.4 and B.8.2.5.1;
- 1,1 times the maximum rated voltage for the tests specified in B.8.2.5.2.

CBRs with more than one rated frequency or a range of rated frequencies shall be tested in each case at the highest and lowest rated frequency. However, for CBRs rated at 50 Hz and 60 Hz, tests at 50 Hz or 60 Hz are considered to cover the requirements.

B.8.2.4 Essais à vide à 20 °C ± 5 °C

Les connexions étant comme représenté en figure B.1, le DPR doit subir les essais de B.8.2.4.1, B.8.2.4.2 et B.8.2.4.3 ainsi que celui de B.8.2.4.4, le cas échéant, tous ces essais étant effectués sur un seul pôle. Chaque essai doit comprendre trois mesures ou vérifications, suivant le cas.

Sauf spécification contraire dans la présente annexe

- pour les DPR à réglages multiples du courant différentiel résiduel de fonctionnement, les essais doivent être effectués pour chaque réglage;
- pour les DPR à réglage du courant différentiel résiduel de fonctionnement par variation continue, les essais doivent être effectués au réglage le plus haut et au réglage le plus bas, et à un réglage intermédiaire;
- pour les DPR du type à temporisation réglable, la temporisation est réglée à sa valeur minimale.

B.8.2.4.1 Vérification du fonctionnement correct en cas d'augmentation régulière du courant différentiel résiduel

Les interrupteurs S1 et S2 et le DPR étant en position de fermeture, le courant différentiel résiduel est augmenté de façon régulière, à partir d'une valeur ne dépassant pas 0,2 $I_{\Delta n}$ afin d'atteindre la valeur $I_{\Delta n}$ en approximativement 30 s, le courant de déclenchement étant mesuré chaque fois. Les trois valeurs mesurées doivent être supérieures à $I_{\Delta no}$ et inférieures ou égales à $I_{\Delta n}$.

B.8.2.4.2 Vérification de la manoeuvre correcte de fermeture sur le courant différentiel résiduel

Le circuit d'essai étant étalonné à la valeur assignée du courant différentiel résiduel de fonctionnement $I_{\Delta n}$ (ou aux réglages spécifiques du courant de fonctionnement différentiel résiduel, le cas échéant, voir B.8.2.4), les interrupteurs S1 et S2 étant en position de fermeture, le DPR est fermé sur le circuit de manière à simuler aussi fidèlement que possible les conditions de service. La durée de coupure est mesurée trois fois.

Aucune mesure ne doit dépasser la valeur limite spécifiée pour $I_{\Delta n}$ en B.4.2.4.1 et B.4.2.4.2.2 suivant le cas.

B.8.2.4.3 Vérification du fonctionnement correct en cas d'apparition brusque du courant différentiel résiduel

Le circuit d'essai étant étalonné à chacune des valeurs du courant différentiel résiduel de fonctionnement I_{Δ} spécifiées en B.4.2.4.1 ou B.4.2.4.2, suivant le cas, l'interrupteur S1 et le DPR étant en position de fermeture, le courant différentiel résiduel est établi brusquement par la fermeture de l'interrupteur S2.

Le DPR doit déclencher au cours de chaque essai.

Trois mesures de la durée de coupure sont effectuées à chaque valeur de I_{Δ} . Aucune des valeurs ainsi obtenues ne doit dépasser la valeur limite correspondante.

B.8.2.4.4 Vérification du temps limite de non-fonctionnement des DPR du type temporisé

Le circuit d'essai étant étalonné à la valeur 2 $I_{\Delta n}$, l'interrupteur S1 et le DPR étant en position de fermeture, le courant différentiel résiduel est établi par la fermeture de l'interrupteur S2 pendant un temps égal à la durée limite de non-fonctionnement déclarée par le constructeur conformément à B.4.2.4.2.1.

B.8.2.4 Off-load test at 20 °C ± 5 °C

The connections being as in figure B.1 the CBR shall perform the tests of B.8.2.4.1, B.8.2.4.2 and B.8.2.4.3, and also, where applicable, B.8.2.4.4, all made on one pole only. Each test shall comprise three measurements or verifications, as applicable.

Unless otherwise specified in this annex

- for CBRs having multiple settings of residual operating current, the tests shall be made for each setting;
- for CBRs having a continuously variable setting of residual operating current, the tests shall be made at the highest and lowest settings, and at one intermediate setting;
- for CBRs of the adjustable time-delay type, the time-delay is set at its minimum value.

B.8.2.4.1 Verification of the correct operation in the case of a steady increase of the residual current

The switches S1 and S2 and the CBR being in the closed position, the residual current is steadily increased, starting from a value not higher than 0,2 $I_{\Delta n}$ so as to attain the value $I_{\Delta n}$ in approximately 30 s, the tripping current being measured each time. The three measured values shall be greater than $I_{\Delta no}$ and less than or equal to $I_{\Delta n}$.

B.8.2.4.2 Verification of the correct operation of closing on residual current

The test circuit being calibrated at the rated value of the residual operating current $I_{\Delta n}$ (or the specific settings of the residual operating current if applicable, see B.8.2.4), and the switches S1 and S2 being closed, the CBR is closed onto the circuit so as to simulate service conditions as closely as possible. The break time is measured three times.

No measurement shall exceed the limiting value specified for $I_{\Delta n}$ in B.4.2.4.1 or B.4.2.4.2.2, as applicable.

B.8.2.4.3 Verification of the correct operation in the case of sudden appearance of residual current

The test circuit being calibrated at each of the values of the residual operating current I_{Δ} specified in B.4.2.4.1 or B.4.2.4.2, as applicable, and the switch S1 and the CBR being in the closed position, the residual current is suddenly established by closing switch S2.

The CBR shall trip during each test.

Three measurements of the break time are made at each value of I_{Δ} . No value shall exceed the relevant limiting value.

B.8.2.4.4 Verification of the limiting non-actuating time of CBRs of the time-delayed type

The test circuit being calibrated at the value of 2 $I_{\Delta n}$, the test switch S1 and the CBR being in the closed position, the residual current is established by closing the switch S2 and applied for a time equal to the limiting non-actuating time declared by the manufacturer, in accordance with B.4.2.4.2.1.

- 178 - 60947-2 © CEI:1995+A1:1997 +A2:2001

Au cours de chacune des trois vérifications, le DPR ne doit pas déclencher. Si le DPR a un courant de réglage ajustable et/ou une temporisation réglable, l'essai est effectué, selon les cas, au réglage minimal du courant différentiel résiduel de fonctionnement et au réglage maximal de la temporisation.

B.8.2.5 Essais aux limites de température

NOTE La limite supérieure de température peut être la température de référence.

Les limites de température de ce paragraphe peuvent être étendues par accord entre le constructeur et l'utilisateur: dans ce cas, les essais doivent être effectués aux limites de température convenues.

B.8.2.5.1 Essai à vide à -5 °C

Le DPR est placé dans une enceinte dont la température ambiante est stabilisée dans les limites de -7 °C à -5 °C. Après avoir atteint l'équilibre thermique, le DPR est soumis aux essais de B.8.2.4.3 et, s'il y a lieu, de B.8.2.4.4.

B.8.2.5.2 Essai en charge à la température de référence ou à +40 °C

Le DPR, raccordé conformément à la figure B.1, est placé dans une enceinte dont la température ambiante est stabilisée à une valeur égale à la température de référence (voir 4.7.3) ou, en l'absence de température de référence, à +40 °C ± 2 °C. Un courant de charge égal à I_n (non indiqué en figure B.1) est appliqué à tous les pôles de phases.

Après avoir atteint l'équilibre thermique, le DPR est soumis aux essais de B.8.2.4.3 et, s'il y a lieu, de B.8.2.4.4

B.8.3 Vérification des propriétés diélectriques

Les propriétés diélectriques des DPR doivent être essayées pour vérifier la tenue aux tensions de choc.

Cet essai est effectué conformément au 8.3.3.4 de la première partie.

B.8.4 Vérification de la manoeuvre du dispositif de contrôle aux limites de la tension assignée

- a) Le DPR étant alimenté à une tension égale à 1,1 fois sa tension assignée maximale, le dispositif de contrôle est manoeuvré 25 fois à des intervalles de 5 s, le DPR étant refermé avant chaque manoeuvre.
- b) L'essai a) est ensuite renouvelé à 0,85 fois la tension assignée minimale, le dispositif de contrôle étant manoeuvré 3 fois.
- c) L'essai a) est ensuite renouvelé, mais seulement une fois, les organes de manoeuvre du dispositif de contrôle étant maintenus en position de fermeture pendant 5 s.

Pour ces essais:

- dans le cas des DPR dont les bornes d'alimentation et de charge sont identifiées, les connexions d'alimentation doivent être conformes au repérage;
- dans le cas des DPR dont les bornes d'alimentation et de charge ne sont pas identifiées, l'alimentation doit être raccordée successivement à chaque jeu de bornes ou, en variante, simultanément aux deux jeux de bornes.

Le DPR doit fonctionner à chaque essai.

During each of the three verifications the CBR shall not trip. If the CBR has an adjustable residual operating current setting and/or an adjustable time-delay, the test is made, as applicable, at the lowest setting of residual operating current and at the maximum setting of time delay.

B.8.2.5 Tests at the temperature limits

NOTE The upper temperature limit may be the reference temperature.

The temperature limits of this subclause may be extended by agreement between manufacturer. and user, in which case tests shall be performed at the agreed temperature limits.

B.8.2.5.1 Off-load test at -5 °C

The CBR is placed in a chamber having a stabilized ambient temperature within the limits of -7 °C and -5 °C. After reaching thermal steady-state conditions, the CBR is submitted to the tests of B.8.2.4.3 and, if applicable, B.8.2.4.4.

B.8.2.5.2 On-load test at the reference temperature or at +40 °C

The CBR, connected in accordance with figure B.1, is placed in a chamber having a stabilized ambient temperature equal to the reference temperature (see 4.7.3) or, in the absence of a reference temperature, equal to 40 °C \pm 2 °C. A load current equal to I_n (not indicated on figure B.1) is applied on all phase poles.

After reaching thermal steady-state conditions, the CBR is submitted to the tests of B.8.2.4.3 and, where applicable, B.8.2.4.4.

B.8.3 Verification of dielectric properties

The dielectric properties of CBRs shall be tested for their withstand against impulse voltages.

The test is made in accordance with 8.3.3.4 of Part 1.

B.8.4 Verification of the operation of the test device at the limits of rated voltage

- a) The CBR being supplied with a voltage equal to 1,1 times the highest rated voltage, the test device is momentarily actuated 25 times at intervals of 5 s, the CBR being closed again before each operation.
- b) Test a) is then repeated at 0,85 times the lowest rated voltage, the device being actuated three times.
- c) Test a) is then repeated, but only once, the operating means of the test device being held in the closed position for 5 s.

For these tests:

- in the case of CBRs with identified line and load terminals, the supply connections shall be in accordance with the marking;
- in the case of CBRs with unidentified line and load terminals, the supply shall be connected to each set of terminals in turn, or alternatively to both sets of terminals simultaneously.

At each test the CBR shall operate.

Pour les DPR à courant différentiel réglable:

- le réglage le plus bas doit être utilisé pour les essais a) et c);
- le réglage le plus élevé doit être utilisé pour l'essai b).

Pour les DPR à temporisation réglable, l'essai est effectué à la temporisation maximale.

NOTE La vérification de l'endurance du dispositif de contrôle est considérée comme étant effectuée par les essais de B.8.1.1.1.

B.8.5 Vérification de la valeur limite du courant de non-fonctionnement en conditions de surintensité

Le DPR est raccordé comme indiqué en figure B.2.

L'impédance Z est ajustée de manière à permettre le passage dans le circuit d'un courant égal à la plus faible des deux valeurs suivantes:

- $-6 I_{\rm n}$;
- 80 % du courant maximal de réglage du déclencheur de court-circuit.

NOTE Pour ce réglage du courant, le DPR D (voir figure B.2) peut être remplacé par des connexions d'impédance négligeable.

Pour les DPR à courant différentiel résiduel réglable, l'essai est effectué au réglage le plus bas.

Les DPR fonctionnellement indépendants de la tension d'alimentation sont essayés sous toute tension convenable.

Les DPR fonctionnellement dépendants de la tension d'alimentation sont alimentés côté source à leur tension assignée (ou, le cas échéant, à une tension de valeur comprise dans le domaine des tensions assignées).

L'essai est effectué à un facteur de puissance de 0,5.

L'interrupteur S1 étant ouvert, est fermé et réouvert après 2 s. L'essai est répété trois fois pour chaque combinaison possible de voies de passage du courant, avec un intervalle d'au moins 1 min entre deux manoeuvres de fermeture successives.

Le DPR ne doit pas déclencher.

NOTE La durée de 2 s peut être réduite (mais pas à une valeur inférieure à celle de la durée de coupure minimale), pour éviter le risque de déclenchement sous l'action du ou des déclencheurs de surcharge du DPR.

B.8.6 Vérification de la résistance aux déclenchements intempestifs dus à des ondes de courant causées par des tensions de choc

Pour les DPR à temporisation réglable (voir B.3.3.2.2) la temporisation doit être réglée au minimum.

B.8.6.1 Vérification de la résistance aux déclenchements intempestifs dans le cas de charge de capacité du réseau

Le DPR est essayé en utilisant un générateur d'onde de courant capable de délivrer un courant oscillatoire amorti comme montré à la figure B.4.

Un exemple de circuit pour la connexion du DPR est montré à la figure B.5.

For CBRs having an adjustable residual operating current

- the lowest setting shall be used for tests a) and c);
- the highest setting shall be used for test b).

For CBRs having an adjustable time-delay the test is made at the maximum setting of time-delay.

NOTE The verification of the endurance of the test device is considered to be covered by the tests of B.8.1.1.1.

B.8.5 Verification of the limiting value of the non-operating current under over-current conditions

The CBR is connected according to figure B.2.

The impedance Z is adjusted so as to let a current equal to the lower of the following two values flow in the circuit:

- 6 $I_{\rm n}$;
- 80 % of the maximum short-circuit release current setting.

NOTE For the purpose of this current adjustment, the CBR D (see figure B.2) may be replaced by connections of negligible impedance.

For CBRs with an adjustable residual current setting the test is made at the lowest setting.

CBRs functionally independent of line voltage are tested at any convenient voltage.

CBRs functionally dependent on line voltage are supplied on the line side with their rated voltage (or, if relevant, with a voltage having any value within the range of rated voltages).

The test is made at a power factor of 0,5.

The switch S1, being open, is closed and reopened after 2 s. The test is repeated three times for each possible combination of the current paths, the interval between successive closing operations being at least 1 min.

The CBR shall not trip.

NOTE The time of 2 s may be reduced (but to not less than the minimum break time) to avoid the risk of tripping by action of the overload release(s) of the CBR.

B.8.6 Verification of the resistance against unwanted tripping due to surge currents resulting from impulse voltages

For CBRs with adjustable time delay (see B.3.3.2.2) the time delay shall be set at minimum.

B.8.6.1 Verification of resistance to unwanted tripping in case of loading of the network capacitance

The CBR is tested using a surge current generator capable of delivering a damped oscillatory current as shown in figure B.4.

An example of the circuit diagram for the connection of the CBR is shown in figure B.5.

Un pôle du DPR choisi au hasard doit être soumis à 10 applications de l'onde de courant. La polarité de l'onde de courant doit être inversée toutes les deux applications. L'intervalle entre deux applications successives doit être approximativement égal à 30 s. Le courant de choc doit être mesuré avec des moyens convenables et réglé en utilisant un échantillon supplémentaire de DPR du même type (voir B.3.4) afin de satisfaire aux prescriptions suivantes:

- valeur crête: 200 A ⁺¹⁰₀ %;
- durée de front conventionnelle: 0,5 μs ± 30 %;
- période de l'onde oscillatoire suivante: 10 μs ± 20 %;
- chaque crête successive: environ 60 % de la crête précédente

Pendant l'essai le DPR ne doit pas déclencher.

B.8.6.2 Vérification de la résistance aux déclenchements intempestifs dans le cas d'amorçage sans courant de suite

Le DPR est essayé en utilisant un générateur d'onde de courant capable de délivrer une onde de courant de 8/20 μs, sans polarité inverse comme montré à la figure B.6.

Un exemple de circuit pour la connexion du DPR est montré à la figure B.7.

Un pôle du DPR choisi au hasard, doit être soumis à 10 applications de l'onde de courant. La polarité de l'onde de courant doit être inversée toutes les deux applications. L'intervalle entre deux applications successives doit être égal à 30 s environ.

Le courant de choc doit être mesuré avec des moyens appropriés et étalonné, en utilisant un échantillon de DPR du même type (voir B.3.4) afin de satisfaire aux prescriptions suivantes:

- valeur de crête: 250 A $^{+10}_{0}$ %;
- durée de front conventionnelle: (T₁) = 8 μs ± 10 %;
- durée jusqu'à mi-valeur (T_2) = 20 μ s ± 10 %;

Pendant les essais le DPR ne doit pas déclencher.

B.8.7 Vérification du comportement des DPR de type A en cas de courant de défaut à la terre comprenant une composante continue

B.8.7.1 Conditions d'essai

Les conditions d'essai de l'article B.8 et des B.8.2.1, B.8.2.2 et B.8.2.3 sont applicables sauf que les circuits d'essai doivent être ceux définis aux figures B.8 et B.9 selon le cas.

B.8.7.2 Vérifications

B.8.7.2.1 Vérification du fonctionnement correct dans le cas d'une application progressive du courant différentiel résiduel continu pulsatoire

L'essai doit être effectué selon la figure B.8.

Les interrupteurs auxiliaires S_1 et S_2 et le DPR doivent être fermés. Le thyristor doit être piloté de telle façon que l'on obtienne des angles de retard du courant α de 0°, 90° et 135°. Chaque pôle du DPR doit être essayé deux fois pour chaque angle de retard du courant, dans la position I ainsi que dans la position II de l'interrupteur auxiliaire S_3 .

One pole of the CBR chosen at random shall be subjected to 10 applications of the surge current. The polarity of the surge current wave shall be inverted after every two applications. The interval between two consecutive applications shall be approximately 30 s. The current impulse shall be measured by appropriate means and adjusted, using an additional sample CBR of the same type (see B.3.4), to meet the following requirements:

- peak value: 200 A ⁺¹⁰/₀ %;
- virtual front time: $0.5 \mu s \pm 30 \%$;
- period of the following oscillatory wave: 10 μ s \pm 20 %;
- each successive peak: about 60 % of the preceding peak.

During the tests the CBR shall not trip.

B.8.6.2 Verification of resistance to unwanted tripping in case of flashover without follow-on current

The CBR is tested using a surge current generator capable of delivering an $8/20~\mu s$ surge current wave, without reverse polarity, as shown in figure B.6.

An example of the circuit diagram for the connection of the CBR is shown in figure B.7.

One pole of the CBR, chosen at random, shall be submitted to 10 applications of the surge current. The polarity of the surge current wave shall be inverted after every two applications. The interval between two consecutive operations shall be approximately 30 s.

The current impulse shall be measured by appropriate means and adjusted, using an additional sample CBR of the same type (see B.3.4), to meet the following requirements:

- peak value: 250 A $^{+10}_{0}$ %;
- virtual front time (T_1) : 8 µs \pm 10 %;
- virtual time to half value (T_2) : 20 μ s \pm 10 %.

During the tests the CBR shall not trip.

B.8.7 Verification of the behaviour of CBRs of type A in the case of an earth fault current comprising a d.c. component

B.8.7.1 Test conditions

The test conditions of B.8 and B.8.2.1, B.8.2.2 and B.8.2.3 apply, except that the test circuits shall be those shown in figures B.8 and B.9, as applicable.

B.8.7.2 Verifications

B.8.7.2.1 Verification of the correct operation in case of a continuous rise of residual pulsating direct current

The test shall be performed according to figure B.8.

The auxiliary switches S_1 and S_2 and the CBR D shall be closed. The relevant thyristor shall be controlled in such a manner that current delay angles α of 0°, 90° and 135° are obtained. Each pole of the CBR shall be tested at each of the current delay angles, twice in position I and twice in position II of the auxiliary switch S_3 .

– 184 –

A chaque essai, le courant démarrant de zéro doit être augmenté progressivement avec un taux de variation approximatif de:

$$\frac{1.4~I_{\Delta n}}{30}$$
 A/s pour les DPR de $I_{\Delta n} > 0.015$ A

$$\frac{2I_{\Delta n}}{30}$$
 A/s pour les DPR de $I_{\Delta n} \le 0,015$ A.

Le courant de déclenchement doit être en accord avec le tableau B.5.

Tableau B.5 – Gammes de courant de déclenchement pour les DPR dans le cas d'un défaut à la terre comprenant des composantes continues

Angle $lpha$	Courant de déclenchement A	
	Limite inférieure	Limite supérieure
O°	0,35 <i>I</i> ∆n	$0.03 \text{ A pour } I_{\Delta n} \leq 0.015 \text{ A}$
90°	0,25 <i>I</i> ∆n	$ \begin{array}{c c} & \text{ou} \\ & 1,4I_{\Delta n} \text{ pour } I_{\Delta n} > 0,015 \text{ A} \end{array} $
135°	0,11 <i>l</i> ∆n	

B.8.7.2.2 Vérification du fonctionnement correct dans le cas d'une apparition soudaine de courants différentiels résiduels continus pulsatoires

L'essai doit être effectué selon la figure B.8.

Le circuit étant étalonné pour les valeurs spécifiées ci-après et l'interrupteur auxiliaire S_1 et le DPR étant en position fermée, le courant différentiel résiduel est appliqué brutalement en fermant l'interrupteur S_2 .

NOTE Dans le cas de DPR fonctionnellement dépendant de la tension d'alimentation, classés selon B.3.1.2.2.1, le circuit de commande étant alimenté du côté source du circuit principal, cette vérification ne prend pas en compte le temps nécessaire pour alimenter le DPR. En conséquence, dans ce cas, la vérification est considérée comme étant faite en établissant le courant différentiel résiduel par la fermeture de S₁, le DPR en essai et S₂ étant fermés au préalable.

Quatre mesures sont effectuées pour chaque valeur de courant d'essai avec un angle de retard du courant α = 0°, deux avec l'interrupteur auxiliaire dans la position I et deux avec l'interrupteur auxiliaire dans la position II.

Pour les DPR de $I_{\Delta n} > 0.015$ A, l'essai doit être effectué à chacune des valeurs de $I_{\Delta n}$ spécifiée au tableau B.1 multipliée par le facteur 1,4.

Pour les DPR de $I_{\Delta n} \le 0.015$ A, l'essai doit être effectué à chacune des valeurs de $I_{\Delta n}$ spécifiée au tableau B.1 multipliée par 2, (ou à 0.03 A, à la valeur la plus élevée).

Aucune valeur ne doit dépasser les valeurs limites spécifiées (voir 7.2.9).

B.8.7.2.3 Vérification du fonctionnement correct avec charge à la température de référence

Les essais de B.8.7.2.1 et B.8.7.2.2 sont répétés, le pôle en essai et un autre pôle du DPR étant parcourus par le courant assigné, le courant étant établi juste avant l'essai.

NOTE La charge avec le courant assigné n'est pas montrée à la figure B.8.

At every test, the current, starting from zero, shall be steadily increased at an approximate rate of

$$\frac{1.4 I_{\Delta n}}{30}$$
 A/s for CBRs of $I_{\Delta n} > 0.015$ A;

$$\frac{2 I_{\Delta n}}{30}$$
 A/s for CBRs of $I_{\Delta n} \le 0.015$ A.

The tripping current shall be in accordance with table B.5.

Table B.5 – Tripping current range for CBRs in case of an earth fault comprising a d.c. component

Angle $lpha$	Tripping current A	
	Lower limit	Upper limit
0°	0,35 I _{∆n}	$\int 0.03 \text{ A for } I_{\Delta n} \leq 0.015 \text{ A}$
90°	0,25 I _{∆n}	$\begin{cases} 0,4I_{\Delta n} \text{ for } I_{\Delta n} > 0,015 \text{ A} \end{cases}$
135°	0,11 <i>I</i> ∆n	1,47Δn 101 1Δn > 0,010 A

B.8.7.2.2 Verification of the correct operation in case of a suddenly appearing residual pulsating direct current

The test shall be performed according to figure B.8.

The circuit being successively calibrated at the values specified hereafter and the auxiliary switch S_1 and the CBR being in the closed position, the residual current is suddenly established by the closing switch S_2 .

NOTE In the case of CBR's functionally dependent on line voltage, classified according to B.3.1.2.2.1, the control circuit of which is supplied from the line side of the main circuit, this verification does not take into account the time necessary to energize the CBR. In this case, therefore, the verification is considered as made by establishing the residual current by closing S_1 , the CBR under test and S_2 being previously closed.

Four measurements are made at each value of test current at a current delay angle α = 0°, two with the auxiliary switch in position I and two in position II.

For CBRs with $I_{\Delta n} > 0.015$ A, the test shall be made at each value of $I_{\Delta n}$ specified in table B.1, multiplied by the factor 1.4.

For CBRs with $I_{\Delta n} \le 0.015$ A, the test shall be made at each value of $I_{\Delta n}$ specified in table B.1, multiplied by the factor 2 (or at 0.03 A, whichever is the higher).

No value shall exceed the specified limiting values (see 7.2.9).

B.8.7.2.3 Verification of the correct operation with load at the reference temperature

The tests of B.8.7.2.1 and B.8.7.2.2 are repeated, the pole under test and one other pole of the CBR being loaded with the rated current, this current being established shortly before the test.

NOTE The loading with rated current is not shown in figure B.8.

B.8.7.2.4 Vérification du fonctionnement correct dans le cas de courants différentiels résiduels continus pulsatoires auxquels on superpose un courant continu lissé de 0,006 A

Le DPR doit être essayé selon la figure B.9 avec un courant différentiel résiduel redressé demi-alternance (angle de retard du courant α = 0°) auquel on superpose un courant continu lissé de 0,006 A.

Chaque pôle du DPR doit être essayé à tour de rôle, deux fois pour chacune des positions I et II.

Pour les DPR avec $I_{\Delta n} > 0.015$ A, le courant redressé demi-alternance, démarrant de 0, étant augmenté progressivement avec un niveau d'accroissement de 1,4 $I_{\Delta n}/30$ ampères par seconde, le déclenchement doit se produire avant que le courant n'atteigne la valeur de 1,4 $I_{\Delta n}$ + 0,006 A.

Pour les DPR avec $I_{\Delta n} \le 0,015$ A, le courant redressé demi-alternance, démarrant de 0, étant progressivement augmenté avec un niveau d'accroissement de 2 $I_{\Delta n}/30$ ampères par seconde, le déclenchement doit se produire avant que le courant n'atteigne la valeur de 0,03 A + 0,006 A.

B.8.8 Vérification du comportement des DPR fonctionnellement dépendants de la tension d'alimentation, classifiés selon B.3.1.2.1

Pour les DPR à courant différentiel résiduel de fonctionnement réglable, l'essai est effectué au réglage le plus bas.

Pour les DPR à temporisation réglable, l'essai est effectué à l'un des réglages de la temporisation.

B.8.8.1 Détermination de la valeur limite de la tension d'alimentation

Une tension égale à la tension assignée est appliquée aux bornes d'alimentation du DPR et est ensuite diminuée progressivement à zéro, en un délai ayant la plus longue des deux valeurs suivantes jusqu'à ce que se produise l'ouverture automatique:

- environ 30 s;
- un temps suffisant pour tenir compte du retard à l'ouverture du DPR (voir B.7.2.11).

La tension correspondante est mesurée.

Trois mesures sont effectuées. Toutes les valeurs doivent être inférieures à 0,85 fois la tension assignée minimale du DPR.

Après ces mesures, on doit vérifier que le DPR déclenche lorsqu'un courant différentiel résiduel égal à $I_{\Delta n}$ est appliqué, la tension appliquée étant juste supérieure à la plus forte valeur mesurée.

On doit alors vérifier que, pour toute valeur de tension inférieure à la valeur mesurée, il n'est pas possible de fermer le DPR à l'aide de ses organes de manoeuvre manuels.

B.8.7.2.4 Verification of the correct operation in case of residual pulsating direct currents superimposed by a smooth direct current of 0,006 A

The CBR shall be tested according to figure B.9, with a half-wave rectified residual current (current delay angle $\alpha = 0^{\circ}$) superimposed by a smooth direct current of 0,006 A.

Each pole of the CBR is tested in turn, twice at each of positions I and II.

For CBRs of $I_{\Delta n} > 0.015$ A, the half-wave current, starting from zero, being steadily increased at an approximate rate of $1.4I_{\Delta n}/30$ amperes per second, tripping shall occur before the current reaches a value not exceeding $1.4I_{\Delta n} + 0.006$ A.

For CBRs of $I_{\Delta n} \le 0.015$ A, the half-wave current, starting from zero, being steadily increased at an approximate rate of $2I_{\Delta n}/30$ amperes per second, tripping shall occur before the current reaches a value not exceeding 0.03A + 0.006 A.

B.8.8 Verification of the behaviour of CBRs functionally dependent on line voltage classified under B.3.1.2.1

For CBRs having an adjustable residual operating current, the test is made at the lowest setting.

For CBRs with an adjustable time-delay, the test is made at any one of the time-delay settings.

B.8.8.1 Determination of the limiting value of the line voltage

A voltage equal to the rated voltage is applied to the line terminals of the CBR and is then progressively lowered to zero over a time period corresponding to the longer of the two values given hereinafter until automatic opening occurs:

- about 30 s:
- a period long enough with respect to the delayed opening of the CBR, if any (see B.7.2.11).

The corresponding voltage is measured.

Three measurements are made. All the values shall be less than 0,85 times the minimum rated voltage of the CBR.

Following these measurements it shall be verified that the CBR trips when a residual current equal to $I_{\Delta n}$ is applied, the applied voltage being just above the highest value measured.

It shall then be verified that, for any value of voltage less than the lowest value measured, it is not be possible to close the CBR by manual operating means.

B.8.8.2 Vérification de l'ouverture automatique en cas de défaillance de la tension d'alimentation

Le DPR étant en position de fermeture, une tension égale à sa tension assignée est appliquée à ses bornes d'alimentation. La tension est ensuite interrompue. Le DPR doit déclencher. L'intervalle de temps entre l'interruption de la tension et l'ouverture des contacts principaux est mesuré.

Trois mesures sont faites:

- a) pour les DPR à ouverture sans retard (voir B.7.2.11) aucune valeur ne doit dépasser 0,2 s;
- b) pour les DPR à ouverture à retard, les valeurs minimale et maximale doivent se situer à l'intérieur du domaine indiqué par le constructeur.

B.8.9 Vérification du comportement des DPR fonctionnellement dépendants de la tension d'alimentation, classifiés selon B.3.1.2.2.1 en cas de défaillance de la tension d'alimentation

Pour les DPR à courant différentiel résiduel de fonctionnement réglable, l'essai est effectué au réglage le plus bas.

Pour les DPR à temporisation réglable, l'essai est effectué à l'un quelconque des réglages de temporisation.

B.8.9.1 Cas de perte d'une phase dans un réseau triphasé

Le DPR est raccordé comme indiqué en figure B.3 et est alimenté côté source à 0,85 fois la tension assignée ou, dans le cas d'une gamme de tensions assignées à 0,85 fois la valeur la plus basse de la tension assignée.

Une phase est alors interrompue en ouvrant l'interrupteur S4; le DPR est alors soumis à l'essai de B.8.2.4.3. L'interrupteur S4 étant refermé, un autre essai est effectué en ouvrant l'interrupteur S5, le DPR est alors soumis à l'essai de B.8.2.4.3.

Cette procédure d'essai est répétée en raccordant la résistance variable R à chacune des deux autres phases successivement.

B.8.9.2 En cas de chute de tension (classification sous B.3.1.2.2.1)

Le DPR est raccordé selon la figure B.3 et est alimenté côté ligne avec la tension assignée ou dans le cas d'une gamme de tensions assignées avec la valeur la plus basse de la tension assignée.

L'alimentation est ensuite interrompue en ouvrant S₁. Le DPR ne doit pas déclencher.

S1 est ensuite refermé et la tension est réduite comme suit:

- pour les DPR avec $I_{\Delta n} \le 1$ A: à 50 V par rapport au neutre;
- pour les DPR avec $I_{\Delta n} > 1$ A: à 55 % de la valeur la plus basse de la tension assignée.

Un courant dont la valeur est égale à $I_{\Delta n}$ est ensuite appliqué. Le DPR doit déclencher.

L'essai est répété en raccordant la résistance variable R à chacune des deux autres phases à tour de rôle.

NOTE La révision de ce paragraphe est à l'étude.

B.8.8.2 Verification of the automatic opening in the case of failure of the line voltage

The CBR being closed, a voltage equal to its rated voltage, or, in the case of a range of rated voltages, any one of the rated voltages is applied to its line terminals. The voltage is then switched off. The CBR shall trip. The time interval between the switching off and the opening of the main contacts is measured.

Three measurements are made:

- a) for CBRs opening without delay (see B.7.2.11) no value shall exceed 0,2 s;
- b) for CBRs opening with delay the maximum and minimum values shall be situated within the range indicated by the manufacturer.

B.8.9 Verification of the behaviour of CBRs functionally dependent on line voltage as classified under B.3.1.2.2.1 in the case of failure of line voltage

For CBRs having an adjustable residual operating current, the test is made at the lowest setting.

For CBRs having an adjustable time-delay the test is made at any one of the time-delay settings.

B.8.9.1 Case of loss of one phase in a 3-phase system

The CBR is connected according to figure B.3 and is supplied on the line side at 0,85 times the rated voltage, or, in the case of a range of rated voltages, at 0,85 times the lowest value of rated voltage.

One phase is then switched off by opening switch S4; the CBR is then submitted to the test of B.8.2.4.3. The switch S4 being closed again, a further test is made by opening switch S5; the CBR is then submitted to the test of B.8.2.4.3.

This test procedure is repeated by connecting the adjustable resistor R to each of the other two phases in turn.

B.8.9.2 In case of voltage drop (classification under B.3.1.2.2.1)

The CBR is connected according to figure B.3 and is supplied on the line side with rated voltage or, in the case of a range of rated voltages, the lowest value of rated voltage.

The supply is then switched off by opening S₁. The CBR shall not trip.

S1 is then reclosed and the voltage is reduced as follows:

- for CBRs of $I_{\Delta n}$ ≤ 1 A: to 50 V to neutral;
- for CBRs of $I_{\Delta n} > 1$ A: to 55 % of the lowest rated voltage.

A current of value $I_{\Delta n}$ is then applied. The CBR shall trip.

This test procedure is repeated by connecting the adjustable resistor R to each of the other two phases in turn.

NOTE The revision of this subclause is under consideration.

Séquence d'essai B II

B.8.10 Vérification du pouvoir de fermeture et de coupure différentiel résiduel en court-circuit

Cet essai est destiné à vérifier l'aptitude du DPR à établir, supporter pendant une durée spécifiée, et interrompre les courants différentiels résiduels de court-circuit.

B.8.10.1 Conditions d'essai

Le DPR doit être essayé conformément aux conditions générales d'essai en 8.3.2.6, suivant la figure 9 de la première partie, mais en étant raccordé d'une manière telle que le courant de court-circuit soit un courant différentiel résiduel.

L'essai est effectué sous une tension entre phase et neutre sur un seul pôle qui ne doit pas être le pôle neutre. Les parties conductrices par lesquelles le courant différentiel résiduel de court-circuit n'a pas à passer sont raccordées à la tension d'alimentation par leurs bornes d'alimentation.

Le cas échéant, le DPR est réglé à la valeur minimale du courant différentiel résiduel de fonctionnement et à la valeur maximale de la temporisation.

Si le DPR a plus d'une valeur de I_{cu} , chacune d'elles ayant une valeur correspondante de $I_{\Delta m}$, l'essai est effectué à la valeur maximale de $I_{\Delta m}$, sous la tension correspondante entre phase et neutre.

B.8.10.2 Modalité d'essai

La séquence de manoeuvres à effectuer est:

O-t-CO

B.8.10.3 Conditions du DPR après essai

B.8.10.3.1 Après l'essai en B.8.10.2, le DPR ne doit présenter aucune détérioration susceptible de compromettre son emploi ultérieur et doit pouvoir, sans entretien

- supporter pendant une minute, une tension égale au double de sa tension assignée d'emploi maximale, dans les conditions de 8.3.3.2;
- établir et couper son courant assigné sous sa tension assignée d'emploi maximale.

B.8.10.3.2 Le DPR doit pouvoir satisfaire à l'essai spécifié en B.8.2.4.3, mais à une valeur égale à 1,25 $I_{\Delta n}$ et sans mesurer la durée de coupure. Cet essai est effectué sur un pôle pris au hasard.

Si le DPR a un courant différentiel résiduel de fonctionnement réglable, l'essai est effectué au réglage le plus bas au courant correspondant à 1,25 fois celui du réglage.

B.8.10.3.3 Le cas échéant, le DPR doit aussi être soumis à l'essai de B.8.2.4.4.

B.8.10.3.4 Les DPR fonctionnellement dépendants de la tension d'alimentation doivent aussi satisfaire aux essais de B.8.8 ou B.8.9 selon le cas.

Test sequence B II

B.8.10 Verification of the residual short-circuit making and breaking capacity

This test is intended to verify the ability of the CBR to make, to carry for a specified time and to break residual short-circuit currents.

B.8.10.1 Test conditions

The CBR shall be tested according to the general test conditions specified in 8.3.2.6, using figure 9 of Part 1, but connected in such a manner that the short-circuit current is a residual current.

The test is carried out at phase to neutral voltage on one pole only which shall not be the neutral pole. The current paths which do not have to carry the residual short-circuit current are connected to the supply voltage at their line terminals.

Where applicable, the CBR is adjusted at the lowest setting of residual operating current and at the maximum setting of time-delay.

If the CBR has more than one value of I_{cu} , each one having a corresponding value of $I_{\Delta m}$, the test is made at the maximum value of $I_{\Delta m}$, at the corresponding phase-to-neutral voltage.

B.8.10.2 Test procedure

The sequence of operations to be performed is

O - t - CO

B.8.10.3 Conditions of the CBR after test

B.8.10.3.1 Following the test of B.8.10.2 the CBR shall show no damage likely to impair its further use and shall be capable, without maintenance, of

- withstanding for 1 min a voltage equal to twice its maximum rated operational voltage, under the conditions of 8.3.3.2;
- making and breaking its rated current at its maximum rated operational voltage.

B.8.10.3.2 The CBR shall be capable of performing satisfactorily the tests specified in B.8.2.4.3, but at a value of 1,25 $I_{\Delta n}$ and without measurement of break time. The test is made on any one pole, taken at random.

If the CBR has an adjustable residual operating current, the test is made at the lowest setting, at a current of a value of 1,25 times that setting.

B.8.10.3.3 Where applicable the CBR shall also be submitted to the test of B.8.2.4.4.

B.8.10.3.4 CBRs functionally dependent on line voltage shall also satisfy the tests of B.8.8 or B.8.9, as applicable.

Séquence d'essai B III

B.8.11 Vérification des effets des conditions d'environnement

Cet essai est effectué conformément à la CEI 60068-2-30.

La température supérieure doit être de 55 °C ± 2 °C (variante 1) et le nombre de cycles doit être

- 6 pour $I_{\Delta n} > 1 \text{ A}$
- 28 pour $I_{\Delta n}$ ≤ 1 A

NOTE Il convient que l'essai de 28 cycles soit appliqué aux DPR ayant plusieurs réglages du courant différentiel résiduel de fonctionnement si l'un des réglages possible est ≤1 A.

A la fin des cycles, le DPR doit pouvoir satisfaire aux essais de B.8.2.4.3. mais avec un courant différentiel résiduel de fonctionnement de 1,25 $I_{\Delta n}$, sans mesurer la durée de coupure. Il est nécessaire de n'effectuer qu'une seule vérification.

Le cas échéant, le DPR doit aussi satisfaire à l'essai de B.8.2.4.4. Il est nécessaire de n'effectuer qu'une seule vérification.

B.8.12 Vérification de l'immunité aux phénomènes à haute fréquence

B.8.12.1 Essais d'immunité aux transitoires rapides électriques en salves

Les conditions d'essai de 7.2.1 de la CEI 61000-4-4 doivent être appliquées.

Le DPR doit être monté en accord avec la figure B.10 sauf que, pour les DPR prévus pour être utilisés dans des enveloppes métalliques, la figure B.11 doit être appliquée.

Lorsque la figure B.10 est applicable, le plan de référence de terre peut être soit horizontal, soit vertical.

Pour les DPR avec des réglages ajustables du courant résiduel de fonctionnement et/ou de temporisation, les essais doivent être effectués au plus bas de ces réglages.

Le DPR doit être alimenté à la tension assignée de fonctionnement ou, dans le cas d'une gamme de tensions assignées de fonctionnement, à la tension assignée la plus élevée de fonctionnement.

Les raccordements d'essai doivent être en accord avec la figure 4 de la CEI 61000-4-4 en tenant compte des instructions du constructeur pour l'installation.

NOTE La nécessité de raccorder les circuits auxiliaires non à l'essai est à l'étude.

Les essais doivent être faits selon le niveau d'essai de B.7.2.12.1.

Pendant les essais, le DPR ne doit pas déclencher.

Après les essais, le fonctionnement correct du DPR doit être vérifié dans le cas d'une apparition soudaine de courant résiduel, selon B.8.2.4.3, mais à $I_{\Delta n}$ seulement.

Le temps d'ouverture ne doit pas dépasser le temps limite spécifié pour $I_{\Delta n}$ en B.4.2.4.1 ou B.4.2.4.2, selon le cas.

Test sequence B III

B.8.11 Verification of the effects of environmental conditions

The test is carried out according to IEC 60068-2-30.

The upper temperature shall be 55 °C ± 2 °C (variant 1) and the number of cycles shall be

- 6 for $I_{\Delta n} > 1$ A
- 28 for $I_{\Delta n}$ ≤ 1 A

NOTE The 28 cycle test should be applied to CBRs having multiple settings of residual operating current when one of the possible settings is ≤ 1 A.

At the end of the cycles the CBR shall be capable of complying with the tests of B.8.2.4.3, but with a residual operating current of 1,25 $I_{\Delta n}$ and without measurement of break time. Only one verification need be made.

Where applicable the CBR shall also comply with the test of B.8.2.4.4. Only one verification need be made.

B.8.12 Verification of immunity to high frequency phenomena

B.8.12.1 Tests for immunity to electrical fast transients/bursts

The test conditions of 7.2.1 of IEC 61000-4-4 shall apply.

The CBR shall be mounted in accordance with figure B.10, except that for CBRs intended to be used in metallic enclosures, figure B.11 shall apply.

Where figure B.10 applies, the ground reference plane may be either horizontal or vertical.

For CBRs with adjustable settings of operating residual current and/or time-delay, the tests shall be made at the lowest of these settings.

The CBR shall be supplied at the rated operational voltage, or, in the case of a range of rated operational voltages, at the highest rated operational voltage.

The test connections shall be in accordance with figure 4 of IEC 61000-4-4, taking into consideration the manufacturer's instructions for installation.

NOTE The need for the connection of auxiliary circuits not under test is under consideration.

The tests shall be made in accordance with the test level of B.7.2.12.1.

During the tests, the CBR shall not trip.

Following the tests, the correct operation of the CBR shall be verified in the case of sudden appearance of residual current, according to B.8.2.4.3, but at $I_{\Delta n}$ only.

The break time shall not exceed the limiting time specified for $I_{\Delta n}$ in B.4.2.4.1 or B.4.2.4.2, as applicable.

B.8.12.2 Essais d'immunité aux ondes de choc

Les conditions d'essai de 7.2 de la CEI 61000-4-5 doivent s'appliquer.

Par commodité, le montage spécifié en B.8.12.1 peut être utilisé mais l'emploi du plan de référence de terre est facultatif.

Pour les DPR ayant des réglages ajustables de courant résiduel et/ou de temporisation de fonctionnement, les essais doivent être effectués avec les plus bas de ces réglages.

Le DPR doit être alimenté à la tension assignée de fonctionnement ou, dans le cas d'une gamme de tensions assignées de fonctionnement, à la tension assignée la plus élevée de fonctionnement.

Les conditions d'essai doivent être en accord avec les figures 6, 7, 8 ou 9 de la CEI 61000-4-5, selon le cas, en prenant en compte les instructions du constructeur pour l'installation.

L'essai doit être effectué selon le niveau d'essai de B.7.2.12.2.

Pendant l'essai, le DPR ne doit pas déclencher.

Après les essais, le fonctionnement correct du DPR doit être vérifié dans le cas d'une apparition soudaine de courant résiduel, selon B.8.2.4.3, mais à $I_{\Delta n}$ seulement.

Le temps de coupure ne doit pas dépasser le temps limite spécifié pour $I_{\Delta n}$ en B.4.2.4.1 ou B.4.2.4.2, selon le cas.

B.8.12.3 Essais pour le champ électromagnétique aux fréquences radioélectriques rayonné

Les conditions d'essai de l'article 7 de la CEI 61000-4-3 doivent s'appliquer.

Le DPR doit être essayé à l'air libre, sauf s'il est prévu pour être utilisé seulement dans une enveloppe individuelle spécifiée et dans ce cas il doit être essayé dans cette enveloppe. Les détails, comprenant les dimensions de l'enveloppe, doivent être indiqués dans le rapport d'essai.

Pour les DPR ayant des réglages ajustables de courant résiduel et/ou de temporisation de fonctionnement, les essais doivent être effectués au plus bas de ces réglages.

Le DPR doit être alimenté à la tension assignée de fonctionnement ou, dans le cas d'une gamme de fréquences de fonctionnement assignée, à la tension assignée de fonctionnement la plus élevée.

Les raccordements d'essai doivent être en accord avec la figure 5 ou la figure 6 de la CEI 61000-4-3, selon le cas, en prenant en compte les instructions du constructeur pour l'installation. Le type de câble utilisé doit être indiqué dans le rapport d'essai.

Lorsqu'on utilise une antenne générant un signal polarisé telle qu'une antenne biconique ou log périodique, les essais doivent être effectués deux fois, une fois selon la polarisation horizontale et une fois selon la polarisation verticale, sur les deux faces considérées comme étant les plus sensibles.

Les essais doivent être faits selon les prescriptions de B.7.2.12.3.

Un pôle du DPR choisi au hasard est alimenté avec un courant résiduel égal à 0,3 $I_{\Delta n}$

B.8.12.2 Surge immunity tests

The test conditions of 7.2 of IEC 61000-4-5 shall apply.

For convenience, the mounting specified in B.8.12.1 may be used but the use of the ground reference plane is optional.

For CBRs with adjustable settings of operating residual current and/or time-delay, the tests shall be made with the lowest of these settings.

The CBR shall be supplied at the rated operational voltage, or in the case of a range of rated operational voltages, at the highest rated operational voltage.

The test conditions shall be in accordance with the figures 6, 7, 8 or 9 of IEC 61000-4-5, as applicable, taking into account the manufacturer's instructions for installation.

The test shall be made in accordance with the test level of B.7.2.12.2.

During the test, the CBR shall not trip.

Following the tests, the correct operation of the CBR shall be verified in the case of sudden appearance of residual current, according to B.8.2.4.3, but at $I_{\Delta n}$ only.

The break time shall not exceed the limiting time specified for $I_{\Delta n}$ in B.4.2.4.1 or B.4.2.4.2, as applicable.

B.8.12.3 Tests for radiated radiofrequency electromagnetic field

The test conditions of clause 7 of IEC 61000-4-3 shall apply.

The CBR shall be tested in free air, unless it is intended to be used only in a specified individual enclosure in which case it shall be tested in such an enclosure. Details, including the dimensions of the enclosure, shall be stated in the test report.

For CBRs with adjustable settings of operating residual current and/or time-delay, the tests shall be made at the lowest of these settings.

The CBR shall be supplied at the rated operational voltage, or, in the case of a range of rated operational voltages, at the highest rated operational voltage.

The test connections shall be in accordance with figure 5 or figure 6 of IEC 61000-4-3, as applicable, taking into account the manufacturer's instructions for installation. The type of cable used shall be stated in the test report.

When using an antenna which generates a polarized signal, such as a biconical or log-periodic antenna, the tests are to be made twice, once at horizontal polarization and once at vertical polarization, on the two faces deemed to be the most sensitive.

The tests shall be made in accordance with the requirements of B.7.2.12.3.

One pole of the CBR, chosen at random, is loaded with a residual current equal to 0,3 $I_{\Delta n}$.

La fréquence est ensuite balayée dans la gamme de 80 MHz à 1 000 MHz en accord avec l'article 8 de la CEI 61000-4-3.

Le DPR ne doit pas déclencher.

A chacune des fréquences 80 MHz, 120 MHz, 160 MHz, 240 MHz, 320 MHz, 480 MHz, 640 MHz et 960 MHz, le DPR doit être alimenté par un courant résiduel égal à 1,25 $I_{\Delta n}$. Le temps de maintien à chaque fréquence ne doit pas être inférieur au temps maximal spécifié de coupure pour $I_{\Delta n}$ au tableau B.1 ou au tableau B.2, selon le cas.

Le DPR doit déclencher à chaque fréquence essayée.

Après les essais, le fonctionnement correct du DPR doit être vérifié dans le cas d'une apparition soudaine de courant résiduel, en accord avec B.8.2.4.3, mais à $I_{\Delta n}$ seulement.

Le temps de coupure ne doit pas dépasser le temps limite spécifié pour $I_{\Delta n}$ au tableau B.1 ou au tableau B.2, selon le cas.

NOTE L'adoption d'autres variantes d'essais pour les perturbations conduites induites par des champs à fréquences radioélectriques, en accord avec la CEI 61000-4-6, est à l'étude.

B.8.13 Essais d'immunité aux décharges électrostatiques

Les conditions d'essai de l'article 7 de la CEI 61000-4-2 doivent s'appliquer.

Le DPR doit être essayé à l'air libre à moins qu'il soit prévu pour être utilisé seulement dans une enveloppe individuelle spécifiée et, dans ce cas, il doit être essayé dans une telle enveloppe.

Les détails, y compris les dimensions de l'enveloppe, doivent être indiqués dans le rapport d'essai.

Pour les DPR avec des réglages ajustables du courant résiduel et/ou de la temporisation de fonctionnement, les essais doivent être effectués au plus bas de ces réglages. Le DPR doit être alimenté à la tension assignée de fonctionnement ou, dans le cas d'une gamme de tensions assignées de fonctionnement, à la tension assignée la plus élevée de fonctionnement.

Les raccordements d'essai doivent être en accord avec la figure 5 et la figure 6 de la CEI 61000-4-2 en tenant compte des instructions du constructeur pour l'installation. Le type de câble utilisé doit être indiqué dans le rapport d'essai.

Les essais sont faits seulement sur les parties du disjoncteur normalement accessibles à l'opérateur en service normal (par exemple moyens de réglage, clavier, organe de commande, enveloppe).

Lorsqu'une décharge apparaît à un point quelconque de l'essai, l'essai est répété dix fois avec un intervalle de 1 s minimum.

Les décharges doivent être faites sur les enveloppes métalliques, si elles existent, en un nombre suffisant de points (voir 8.3.2 de la CEI 61000-4-2).

Les essais doivent être faits en accord avec les prescriptions de B.7.2.13.

Les essais sont faits sans charge.

Pendant les essais, le DPR peut déclencher. Si c'est le cas, un nouvel essai doit être effectué au niveau 3. Le DPR ne doit pas déclencher.

The frequency is then swept over the range 80 MHz to 1 000 MHz in accordance with clause 8 of IEC 61000-4-3.

The CBR shall not trip.

At each of the following frequencies 80 MHz, 120 MHz, 160 MHz, 240 MHz, 320 MHz, 480 MHz, 640 MHz and 960 MHz, the CBR shall be loaded with a residual current equal to 1,25 $I_{\Delta n}$. The dwell time at each frequency shall not be less than the maximum break time specified for $I_{\Delta n}$ in table B.1 or table B.2, as applicable.

The CBR shall trip at each frequency tested.

Following the tests, the correct operation of the CBR shall be verified in the case of sudden appearance of residual current, according to B.8.2.4.3, but at $I_{\Delta n}$ only.

The break time shall not exceed the limiting time specified for $I_{\Delta n}$ in table B.1 or table B.2, as applicable.

NOTE Adoption of alternative tests for conducted disturbances induced by radiofrequency fields, according to IEC 61000-4-6, is under consideration.

B.8.13 Tests for immunity to electrostatic discharges

The test conditions of clause 7 of IEC 61000-4-2 shall apply.

The CBR shall be tested in free air unless it is intended to be used only in a specified individual enclosure, in which case it shall be tested in such an enclosure.

Details, including the dimensions of the enclosure, shall be stated in the test report.

For CBRs with adjustable settings of operating residual current and/or time-delay, the tests shall be made at the lowest of these settings. The CBR shall be supplied at the rated operational voltage, or, in the case of a range of rated operational voltages, at the highest operational voltage.

The test connections shall be in accordance with figure 5 and figure 6 of IEC 61000-4-2 taking into account the manufacturer's instructions for installation. The type of cable used shall be stated in the test report.

The tests are made only on parts of the circuit-breaker normally accessible to the operator in normal service (e.g. setting means, keyboard, actuator, enclosure).

In case a discharge occurs at any test point, the test is repeated ten times with an interval of 1 s minimum.

Discharges shall be made on metallic enclosures, if any, at a sufficient number of points (see 8.3.2 of IEC 61000-4-2).

The tests shall be made in accordance with the requirements of B.7.2.13.

The tests are made without load.

During the tests, the CBRs may trip. If this is the case, a further test shall be made at level 3. The CBR shall not trip.

Après les essais, le fonctionnement correct du DPR doit être vérifié dans le cas d'une apparition soudaine de courant résiduel selon B.8.2.4.3, mais à $I_{\Delta n}$ seulement.

Le temps de coupure ne doit pas dépasser le temps limite spécifié pour $I_{\Delta n}$ au tableau B.1 ou au tableau B.2, selon le cas.

B.8.14 Essais pour les émissions aux fréquences radioélectriques

Les DPR doivent satisfaire aux prescriptions de B.7.3.

Les DPR doivent être essayés à l'air libre.

NOTE Etant donné que les essais à l'air libre sont considérés comme étant les plus sévères, les essais sous enveloppes ne sont pas nécessaires.

Le type de câble utilisé doit être indiqué dans le rapport d'essai.

B.8.14.1 Essais pour les émissions conduites aux fréquences radioélectriques

Une description de l'essai, la méthode d'essai et la disposition de l'essai sont données dans le CISPR 11 ou le CISPR 22, selon le cas.

B.8.14.2 Essai pour les émissions rayonnées aux fréquences radioélectriques

Les essais doivent être effectués en accord avec F.11.2, mais avec les modifications suivantes:

- le DPR est alimenté à sa tension de fonctionnement assignée ou, dans le cas d'une gamme de tensions de fonctionnement assignées, à la tension de fonctionnement assignée la plus élevée;
- les essais sont effectués sans courant de charge et sans courant résiduel.

B.8.15 Essais pour des variations ou des interruptions de tension ou pour des creux de tension

NOTE Pour une définition des creux de tension, voir la CEI 61000-4-11.

Les essais correspondants de B.8.8 et B.8.9 sont considérés comme adaptés pour couvrir les prescriptions CEM.

Aucun essai supplémentaire n'est donc requis.

Following the tests, the correct operation of the CBR shall be verified in the case of sudden appearance of residual current according to B.8.2.4.3, but at $I_{\Delta n}$ only.

The break time shall not exceed the limiting time specified for $I_{\Delta n}$ in table B.1 or table B.2, as applicable.

B.8.14 Tests for radiofrequency emissions

CBRs shall comply with the requirements of B.7.3.

CBRs shall be tested in free air.

NOTE Since tests in free air are deemed to represent the most severe conditions, tests in enclosures are not necessary.

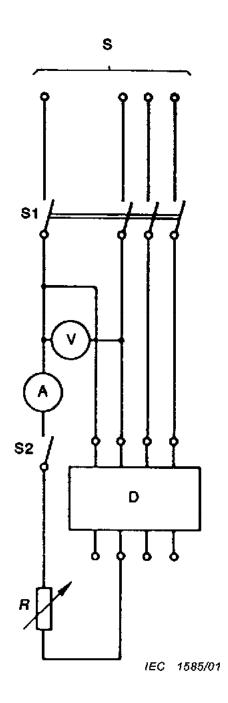
The type of cable used shall be stated in the test report.

B.8.14.1 Test for conducted radiofrequency emissions

A description of the test, the test method and the test arrangement are given in CISPR 11 or CISPR 22, as relevant.

B.8.14.2 Test for radiated radiofrequency emissions

Tests shall be made in accordance with F.11.2, but with the following modifications:


- the CBR is supplied at its rated operational voltage, or, in the case of a range of rated operational voltages, at the highest rated operational voltage;
- tests are made without load current and without residual current.

B.8.15 Tests for variations or interruptions of voltage and for voltage dips

NOTE For a definition of voltage dips, see IEC 61000-4-11.

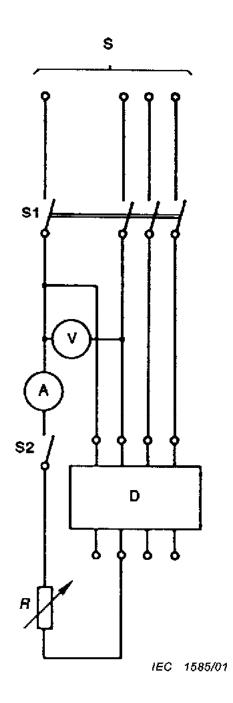
The relevant tests of B.8.8 and B.8.9 are considered adequate to cover the EMC requirements.

No additional tests are therefore required.

S = Source d'énergie

V = Voltmètre

A = Ampèremètre


S1 = Interrupteur omnipolaire

\$2 = Interrupteur unipolaire

D = DPR en essai

R = Résistance réglable

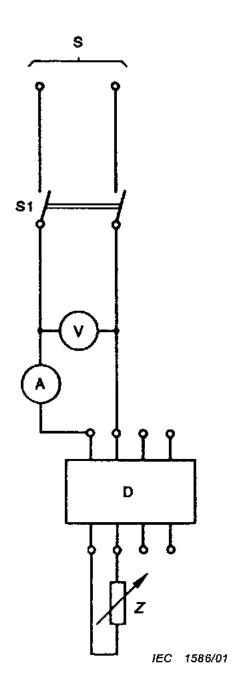
Figure B.1 – Circuit d'essai pour la vérification de la caractéristique de fonctionnement (voir B.8.2)

S = Supply

V = Voltmeter

A = Ammeter

S1 = All-pole switch


S2 = Single-pole switch

D = CBR under test

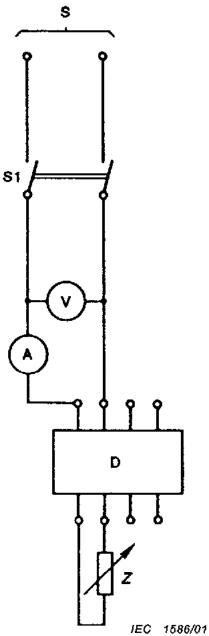
R = Adjustable resistor

Figure B.1 – Test circuit for the verification of the operating characteristic (see B.8.2)

Figure B.2 – Circuit d'essai pour la vérification de la valeur limite du courant de non-fonctionnement en cas de surintensités (voir B.8.5)

S = Source d'énergie

S1 = Interrupteur bipolaire


V = Voltmètre

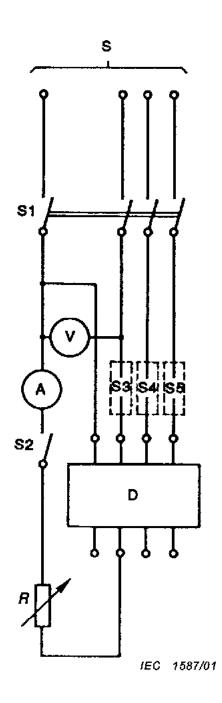
A = Ampèremètre

D = DPR en essai

Z = Impédance réglable

Figure B.2 – Test circuit for the verification of the limiting value of the non-operating current under over-current conditions (see B.8.5)

S = Supply


S1 = Two-pole switch

V = Voltmeter

A = Ammeter

D = CBR under test

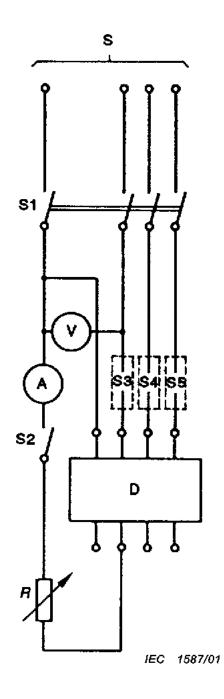
Z = Adjustable impedance

S = Source d'énergie

V = Voltmètre

A = Ampèremètre

S1 = Interrupteur omnipolaire


S2 = Interrupteur unipolaire

S3, S4, S5 = Interrupteurs coupant une phase à tour de rôle

D = DPR en essai

R = Résistance réglable

Figure B.3 – Circuit d'essai pour vérification du comportement des DPR classifiés selon B.3.1.2.2.1 (voir B.8.9)

S = Supply

V = Voltmeter

A = Ammeter

S1 = All-pole switch

S2 = Single-pole switch

S3, S4, S5 = Single-pole switches opening one phase in turn

D = CBR under test

R = Adjustable resistor

Figure B.3 – Test circuit for the verification of the behaviour of CBRs classified under B.3.1.2.2.1 (see B.8.9)

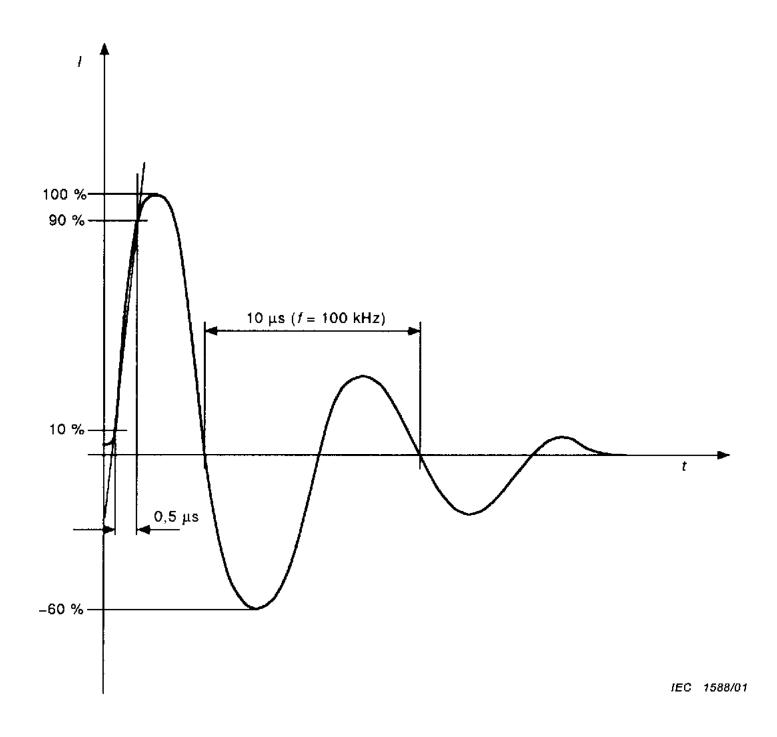
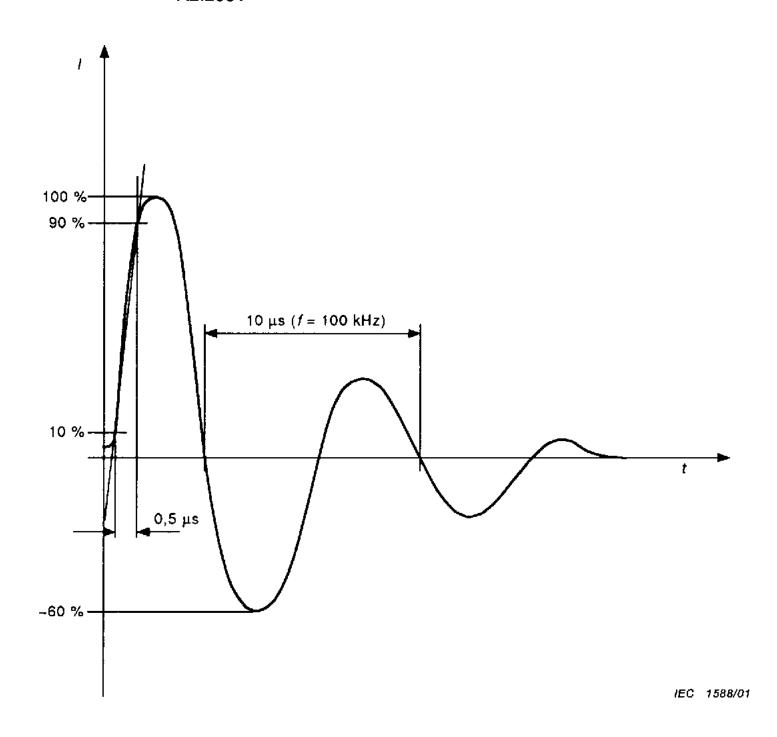
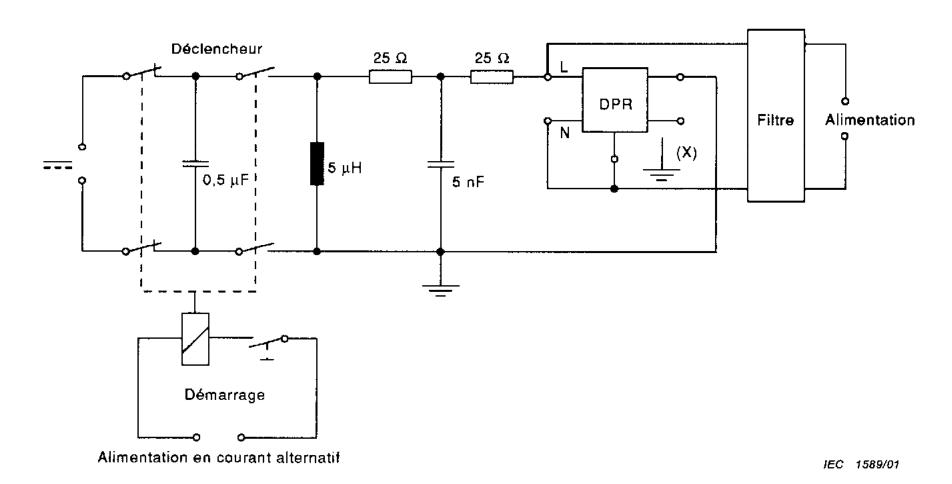
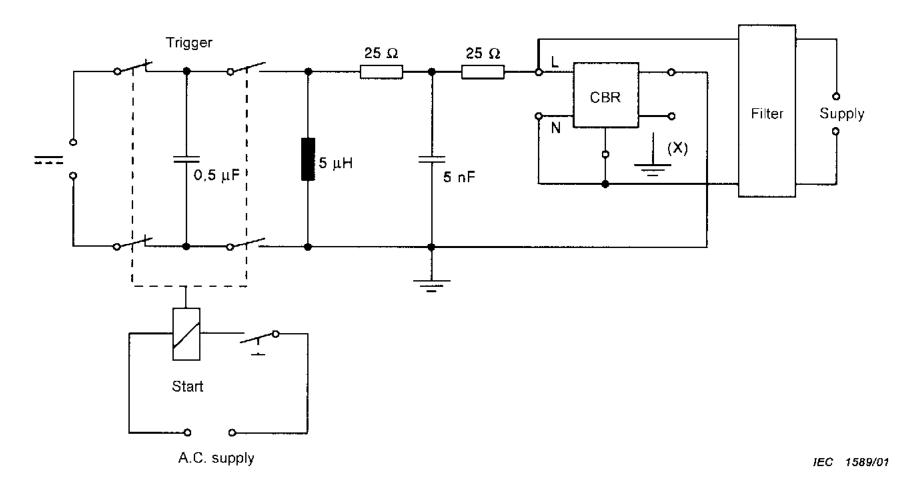


Figure B.4 – Onde de courant 0,5 μ s/100 kHz


Figure B.4 – Current ring wave 0,5 μ s/100 kHz

(X) Borne de terre, si elle existe, raccordée à la borne du neutre, si elle est repérée ou en l'absence d'un tel repérage à n'importe laquelle des bornes de phase.

NOTE Les valeurs des composants du circuit sont données seulement comme guide et peuvent nécessiter un réglage afin de satisfaire aux prescriptions concernant la forme d'onde de la figure B.4.

Figure B.5 – Exemple de circuit d'essai pour la vérification de la résistance aux déclenchements intempestifs

(X) Earthing terminal, if provided, to be connected to the neutral terminal, if so marked or in the absence of such marking, to any phase terminal.

NOTE The circuit component values are given for guidance only and may require adjustment to comply with the wave shape requirements of figure B.4.

Figure B.5 – Example of test circuit for the verification of resistance to unwanted tripping

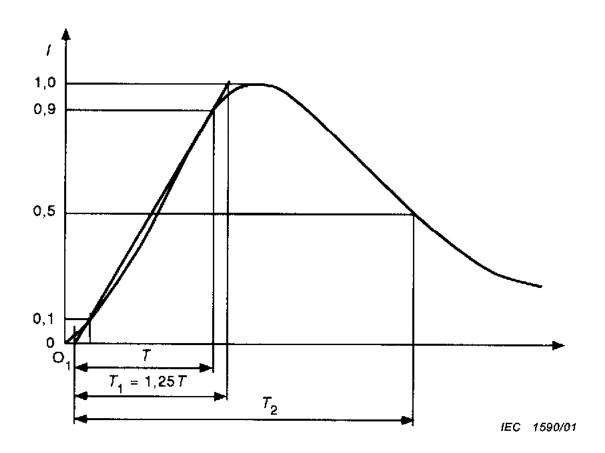


Figure B.6 – Onde de courant de choc 8/20 μs

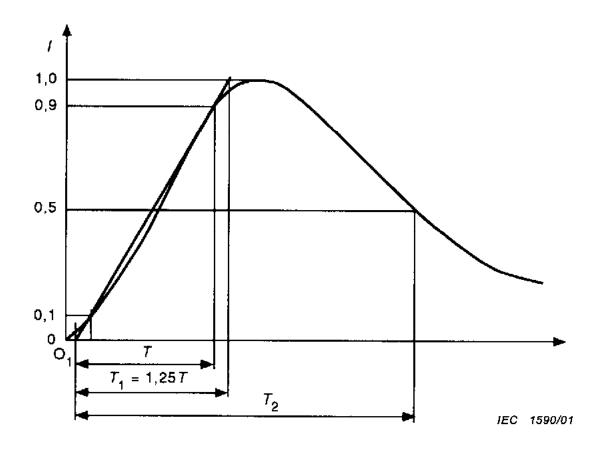
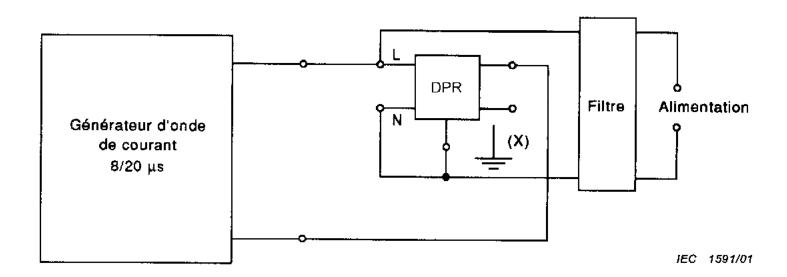
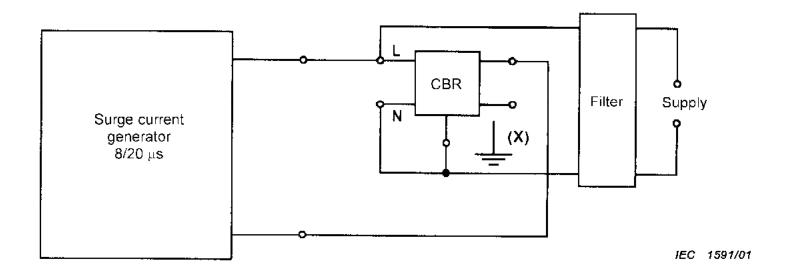




Figure B.6 – Surge current wave 8/20 μs

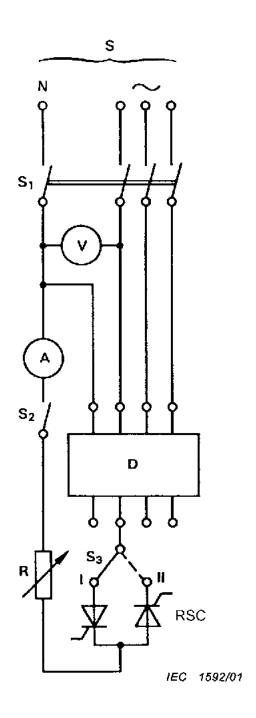

(X) Borne de terre, si elle existe, raccordée à la borne du neutre, si elle est repérée ou en l'absence d'un tel repérage à n'importe laquelle des bornes de phase.

Figure B.7 – Circuit d'essai pour la vérification de la résistance aux déclenchements intempestifs en cas d'amorçage sans courant de suite (B.8.6.2)

(X) Earthing terminal, if provided, to be connected to the neutral terminal, if so marked or in the absence of such marking, to any phase terminal.

Figure B.7 – Test circuit for the verification of resistance to unwanted tripping in case of flashover without follow-on current (B.8.6.2)

 $\begin{array}{lll} S & = A limentation & R & = R \acute{e} sistance \ variable \\ V & = Voltm \`{e} tre & S_1 & = Interrupteur \ omnipolaire \\ A & = A mp \`{e} rem \`{e} tre \ (mesurant \ la \ valeur \ efficace) & S_2 & = Interrupteur \ unipolaire \\ D & = DPR \ en \ essai & S_3 & = Interrupteur \ \grave{a} \ deux \ voies \\ \end{array}$

Figure B.8 – Circuit d'essai pour la vérification du fonctionnement correct du DPR dans le cas du courant différentiel continu pulsé (voir B.8.7.2.1, B.8.7.2.2 et B.8.7.2.3)

RSC = Thyristors

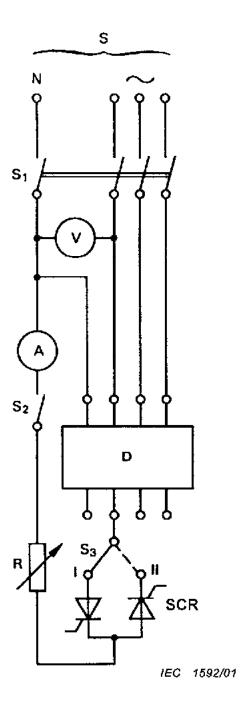
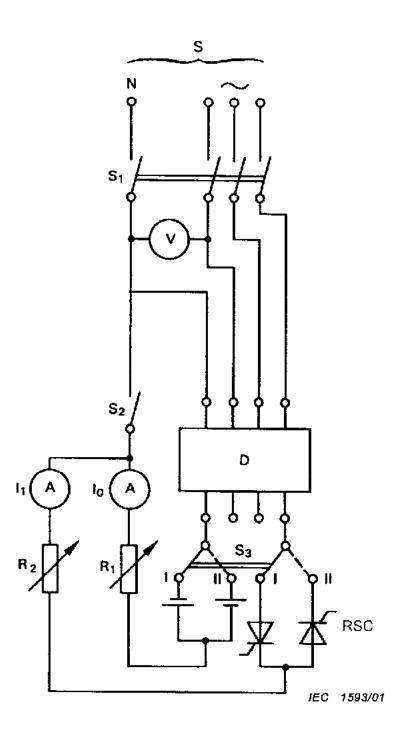
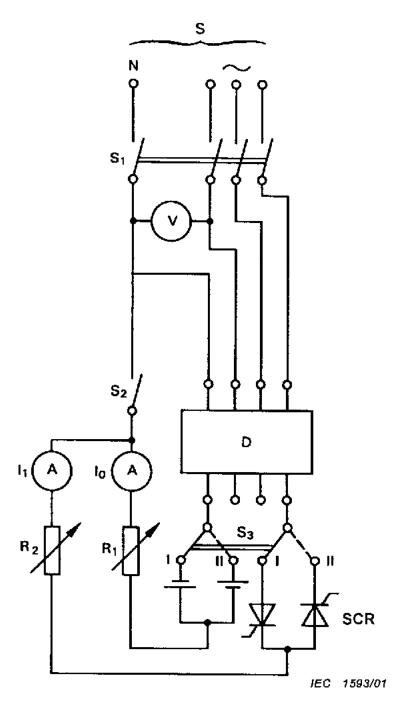



Figure B.8 – Test circuit for the verification of the correct operation of CBRs, in the case of residual pulsating direct currents (see B.8.7.2.1, B.8.7.2.2 and B.8.7.2.3)


SCR = Thyristors

 $\begin{array}{lll} S & = \text{Alimentation} & & R_1, \ R_2 & = \text{R\'esistances variables} \\ V & = \text{Voltm\`etre} & & S_1 & = \text{Interrupteur omnipolaire} \\ A & = \text{Amp\`erem\`etre (mesurant la valeur efficace)} & S_2 & = \text{Interrupteur unipolaire} \\ D & = \text{DPR en essai} & S_3 & = \text{Interrupteur \`a deux voies} \\ \end{array}$

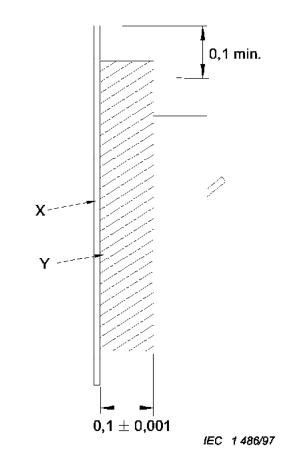
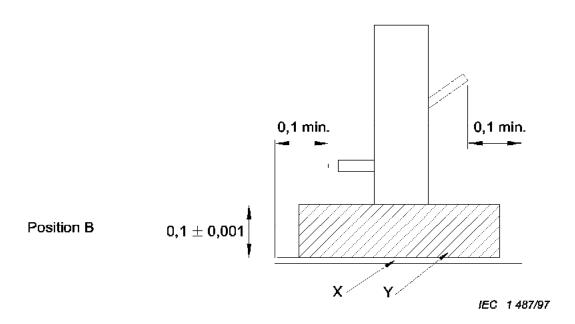
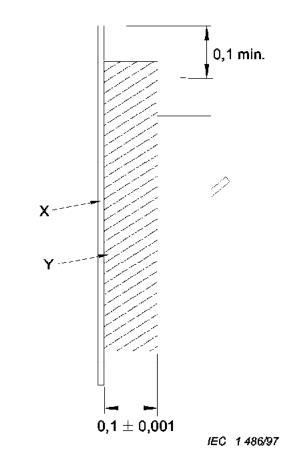

RSC = Thyristors

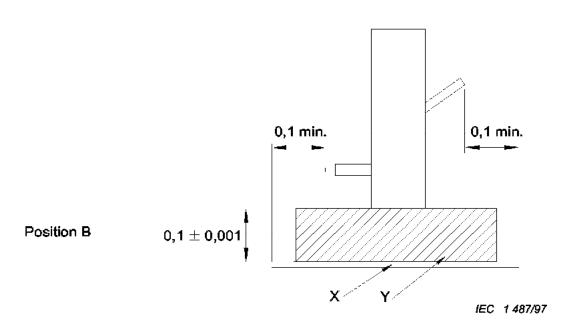
Figure B.9 – Circuit d'essai pour la vérification du fonctionnement correct du DPR dans le cas d'un courant résiduel continu pulsé auquel est superposé un courant résiduel continu lissé (voir B.8.7.2.4)



S = Supply $R_1, R_2 = Variable resistor$ V = Voltmeter $S_1 = All-pole switch$ $A = Ammeter (measuring r.m.s values) <math>S_2 = Single pole switch$ $D = CBR under test <math>S_3 = Two$ -way switch SCR = Thyristors

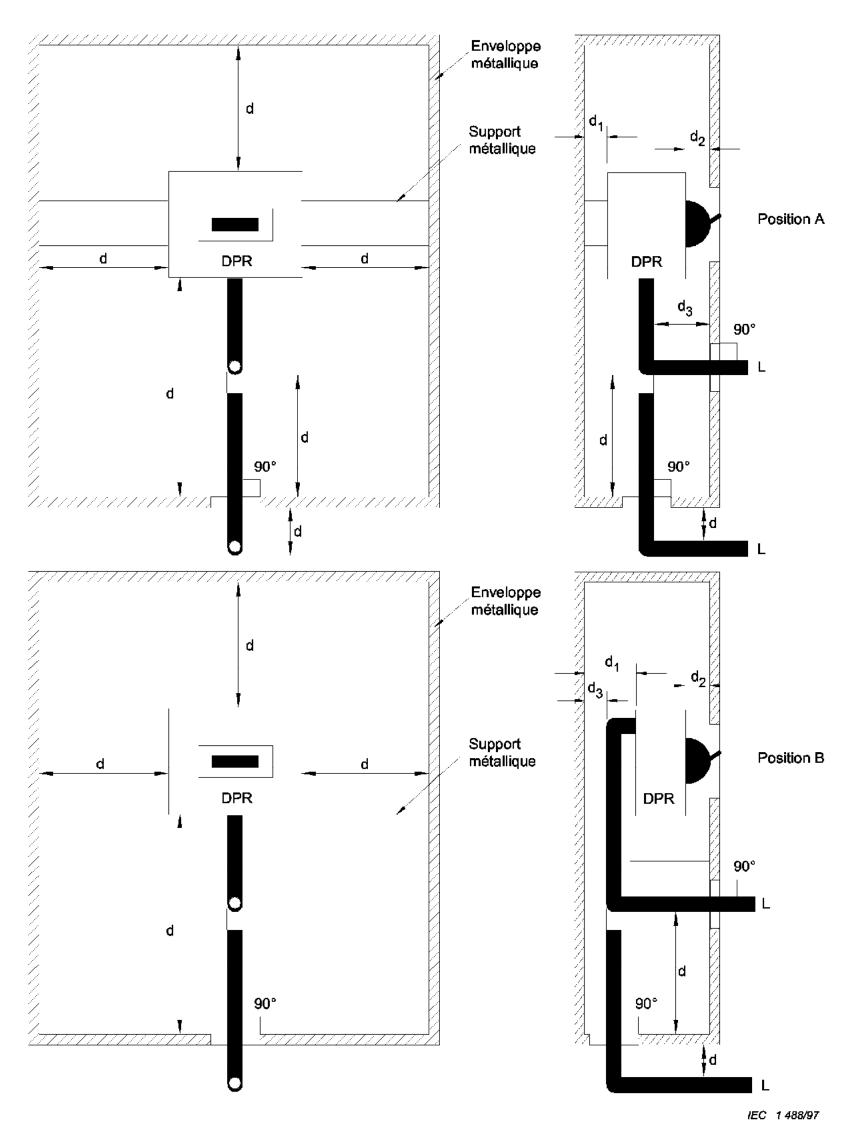
Figure B.9 – Test circuit for the verification of the correct operation of CBRs, in the case of a residual pulsating direct current superimposed by a smooth direct residual current (see B.8.7.2.4)


Position A


Dimensions en mètres

- X plan de référence de terre selon la CEI 61000-4-4
- Y support d'isolation

Figure B.10 – Dispositif d'essai pour les DPR autres que ceux utilisés dans des enveloppes métalliques spécifiées, pour vérifier l'immunité aux transitoires rapides électriques (voir B.8.12.1)


Position A

Dimensions in metres

- X ground reference plane according to IEC 61000-4-4
- Y insulating support

Figure B.10 – Test arrangements for CBRs other than those to be used in specified metallic enclosures, for verifying immunity to electrical fast transients (see B.8.12.1)


L ≤ 1 m longueur maximale du câble entre le DPR et le dispositif de couplage

d toute dimension ≥0,1 m

d1, d2 selon le modèle du constructeur

distance maximale admise d'après le modèle

Figure B.11 – Dispositif d'essai pour les DPR prévus pour être utilisés dans une enveloppe métallique spécifiée pour vérifier l'immunité aux transitoires rapides électriques (voir B.8.12.1)

- $L \le 1 \text{ m}$ maximum length of the cable between CBR and coupling device
- d any dimension ≥0,1 m
- d1, d2 according to manufacturer's design
- d3 maximum distance permitted by the design

Figure B.11 – Test arrangements for CBRs intended to be used in specified metallic enclosure for verifying immunity to electrical fast transients (see B.8.12.1)

60947-2 © CEI:1995+A1:1997

+A2:2001

Annexe C

(normative)

Séquence d'essais en court-circuit sur un pôle séparément

C.1 Généralités

Cette séquence d'essais est applicable aux disjoncteurs multipolaires pour emploi sur des réseaux ayant une phase reliée à la terre et identifiés comme précisé au 4.3.1.1; elle comprend les essais suivants:

Essai	Article
Pouvoir de coupure en court-circuit sur un pôle séparément (I _{SU})	C.2
Vérification de la tenue diélectrique	C.3
Vérification des déclencheurs de surcharge	C.4

C.2 Essai de pouvoir de coupure en court-circuit sur un pôle séparément

Un essai de court-circuit est effectué dans les conditions générales du 8.3.2 avec une valeur de courant présumé I_{su} égale à 25 % du pouvoir assigné de coupure ultime en court-circuit I_{cu} .

NOTE Des valeurs supérieures à 25 % de I_{cu} peuvent être essayées et annoncées par le constructeur.

La tension appliquée doit être la tension entre phases correspondant à la tension assignée d'emploi maximale du disjoncteur à laquelle celui-ci convient pour emploi dans des réseaux à une phase reliée à la terre. Le nombre d'échantillons à essayer, et le réglage des déclencheurs réglables doivent être comme indiqué au tableau 10. Le facteur de puissance doit être conforme au tableau 11, en fonction du courant d'essai.

Le circuit d'essai doit être conforme au 8.3.4.1.2 de la première partie et à la figure 9 de la première partie, l'alimentation S provenant de deux phases d'une alimentation triphasée, l'élément fusible F étant raccordé à la phase restante. Le ou les pôles disponibles doivent aussi être raccordés à cette phase par l'élément fusible F.

La séquence de manoeuvres doit être:

$$O - t - CO$$

et doit être effectuée sur chaque pôle pris séparément, à tour de rôle.

C.3 Vérification de la tenue diélectrique

A la suite de l'essai selon l'article C.2, la tenue diélectrique doit être vérifiée conformément à 8.3.5.3.

C.4 Vérification des déclencheurs de surcharge

A la suite de l'essai selon l'article C.3, le fonctionnement des déclencheurs de surcharge doit être vérifié conformément à 8.3.5.4.

+A2:2001

Annex C (normative)

Individual pole short-circuit test sequence

C.1 General

This test sequence applies to multipole circuit-breakers intended for use on phase-earthed systems and identified in accordance with 4.3.1.1; it comprises the following tests:

Test	Clause
Individual pole short-circuit breaking capacity (I _{SU})	C.2
Verification of dielectric withstand	C.3
Verification of overload releases	C.4

C.2 Test of individual pole short-circuit breaking capacity

A short-circuit test is made under the general conditions of 8.3.2, with a value of prospective current I_{su} equal to 25 % of the ultimate rated short-circuit breaking capacity I_{cu} .

NOTE Values higher than 25 % of $l_{\rm cu}$ may be tested and declared by the manufacturer.

The applied voltage shall be phase-to-phase voltage corresponding to the maximum rated operational voltage of the circuit-breaker at which it is suitable for application on phase-earthed systems. The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10. The power factor shall be according to table 11, appropriate to the test current.

The test circuit shall be according to subclause 8.3.4.1.2 and figure 9 of Part 1, the supply S being derived from two phases of a three-phase supply, the fusible element F being connected to the remaining phase. The remaining pole or poles shall also be connected to this phase via the fusible element F.

The sequence of operations shall be

$$0-t-CO$$

and shall be made on each pole separately, in turn.

C.3 Verification of dielectric withstand

Following the test according to clause C.2, the dielectric withstand shall be verified according to 8.3.5.3.

C.4 Verification of overload releases

Following the test according to clause C.3, the operation of the overload releases shall be verified in accordance with 8.3.5.4.

Annexe D (informative)

Distances d'isolement et lignes de fuite

D.1 Généralités

- **D.1.1** Les valeurs adéquates pour les distances d'isolement et les lignes de fuite dépendent largement de facteurs variables, tels que les conditions atmosphériques, le type d'isolation employé, la disposition des trajets de fuite et les conditions du réseau dans lequel le disjoncteur doit être utilisé. Pour ces raisons, le choix des valeurs appropriées est l'affaire du constructeur.
- **D.1.2** Il est recommandé de prévoir, à la surface des parties isolantes, des nervures disposées de manière à rompre la continuité de tout dépôt conducteur qui viendrait à s'y former.
- **D.1.3** Les parties conductrices recouvertes uniquement de vernis ou d'émail, ou protégées seulement par oxydation ou au moyen d'un procédé similaire, ne sont pas considérées comme étant isolées au point de vue des distances d'isolement et des lignes de fuite.
- **D.1.4** Les distances d'isolement et les lignes de fuite doivent être conservées dans les conditions suivantes:
- D'une part, sans les connexions électriques extérieures, d'autre part, lorsque des conducteurs isolés ou nus, du type et de toutes dimensions spécifiés pour le disjoncteur, sont raccordés conformément aux instructions du constructeur, si elles existent.
- Après remplacement de pièces interchangeables, compte tenu des tolérances de fabrication maximales admissibles.
- Compte tenu des déformations possibles dues aux effets de la température, du vieillissement, des chocs et des vibrations ou aux conditions de court-circuit que le disjoncteur peut avoir à supporter.

D.2 Détermination des distances d'isolement et des lignes de fuite

Pour la détermination des distances d'isolement et des lignes de fuite, il est recommandé de tenir compte des points suivants:

- D.2.1 Pour la détermination d'une ligne de fuite, les rainures de profondeur et de largeur au moins égales à 2 mm sont mesurées le long de leur contour. Les rainures ayant une de leurs dimensions inférieure à cette valeur et celles susceptibles d'être obstruées par de la poussière sont négligées et seule la distance en ligne droite est mesurée.
- D.2.2 Pour la détermination d'une ligne de fuite, les nervures de hauteur inférieure à 2 mm sont négligées. Celles de hauteur au moins égale à 2 mm sont mesurées.
- le long de leur contour, si elles font partie intégrante d'une pièce en matière isolante (par exemple par moulage ou soudage);
- en suivant le plus court des deux trajets: longueur du joint ou profil de la nervure, si elles ne font pas partie intégrante d'une pièce en matière isolante.
- D.2.3 L'application des recommandations qui précèdent est illustrée par les exemples 1 à 11 de l'annexe G de la première partie.

+A2:2001

Annex D (informative)

Clearances and creepage distances

D.1 General

- **D.1.1** Suitable values for clearances and creepage distances depend highly on variable factors such as atmospheric conditions, the type of insulation employed, the disposition of the creepage paths and conditions of the system in which the circuit-breaker is to be used. For these reasons, the selection of the proper values is the responsibility of the manufacturer.
- **D.1.2** It is recommended that the surface of the insulating parts should be designed with ridges so arranged as to break the continuity of conducting deposits which may form.
- **D.1.3** Conducting parts covered only with varnish or enamel, or protected only by oxidation or a similar process, should not be considered as being insulated from the point of view of clearances and creepage distances.
- **D.1.4** Clearances and creepage distances shall be maintained under the following circumstances:
- on the one hand, without external electrical connections, and, on the other hand, when conductors either insulated or bare, of the type and of any dimensions specified for the circuit-breaker, are installed according to the manufacturer's instructions, if any;
- after interchangeable parts have been changed, taking into account maximum permissible manufacturing tolerances;
- taking into consideration possible deformations either due to the effect of temperature, ageing, shocks, vibration, or due to short-circuit conditions which the circuit-breaker is intended to endure.

D.2 Determination of clearances and creepage distances

In determining clearances and creepage distances, it is recommended that the following points be considered:

- **D.2.1** In determining a creepage distance, grooves at least 2 mm wide and 2 mm deep are measured along their contour. Grooves having any dimension less than these dimensions and any groove liable to be clogged with dirt are neglected and only the direct distance is measured.
- **D.2.2** In determining a creepage distance, ridges less than 2 mm high are neglected. Those at least 2 mm high are measured:
- along their contour, if they are an integral part of a component in insulating material (for instance by moulding or welding);
- along the shorter of two paths: length of joint or profile of ridge, if they are not an integral part of a component made of insulating material.
- **D.2.3** The application of the foregoing recommendations is illustrated by examples 1 to 11 of annex G of Part 1.

- 226 - 60947-2 © CEI:1995+A1:1997 +A2:2001

Annexe E

(informative)

Points faisant l'objet d'un accord entre le constructeur et l'utilisateur

NOTE Dans le cadre de la présente annexe:

- le mot «accord» s'entend dans un sens très large;
- le mot «utilisateur» comprend les stations d'essai.

L'annexe J de la première partie est applicable en ce qui concerne les articles et les paragraphes auxquels se réfère la présente norme, avec les compléments suivants:

Numéro d'article ou de paragraphe de la présente norme	Sujet	
4.3.5.3	Disjoncteurs de pouvoir de fermeture en court-circuit supérieur aux valeurs du tableau 2	
7.2.1.2.1	Manoeuvre d'ouverture automatique autre qu'à déclenchement libre mais à accumulation d'énergie	
Tableaux 10	Valeur du courant d'essai pour les essais de court-circuit des disjoncteurs tétrapolaires sur le quatrième pôle	
8.3.2.5	Méthode à suivre pour les essais d'échauffement des disjoncteurs tétrapolaires de courant thermique conventionnel supérieur à 63 A	
8.3.2.6.4	Valeur du courant d'essai pour les essais de court-circuit des disjoncteurs tétrapolaires sur le quatrième pôle	
8.3.3.1.3, point b)	Valeur du courant d'essai pour la vérification des caractéristiques temps/courant à temps inverse	
8.3.3.4	Augmentation de la sévérité des conditions d'essai de fonctionnement en surchar	
8.3.3.7 8.3.4.4	Délai admissible entre la vérification de l'échauffement et celle des déclencheurs de surcharge dans les séquences d'essais I et II	
8.4.2	Etalonnage des déclencheurs autres que les déclencheurs de surintensité, les déclencheurs shunt et les déclencheurs à minimum de tension	
B.8	Applicabilité des essais lorsque $I_{\Delta n}$ > 30 A	
B.8.2.5	Extension des limites de l'essai à température ambiante	
F.4.1.3	Essai à un courant inférieur à deux fois le courant de réglage	

Annex E (informative)

Items subject to agreement between manufacturer and user

NOTE For the purpose of this annex

- "agreement" is used in a very wide sense;
- "user" includes testing stations.

Annex J of Part 1 applies with regard to clauses and subclauses of this standard, with the following additions:

Clause or subclause number of this standard	Item	
4.3.5.3	Circuit-breakers for higher short-circuit making capacity than given in table 2	
7.2.1.2.1	Automatic opening operation other than trip-free operation and by stored energy	
Table 10	Setting of overload releases at intermediate values for short-circuit tests	
8.3.2.5	Method of temperature-rise tests for four-pole circuit-breakers having a conventional thermal current higher than 63 A	
8.3.2.6.4	Value of test current for short-circuit tests on the fourth pole of four-pole circuit- breakers	
8.3.3.1.3, item b)	Test current value for the verification of inverse time/current characteristics	
8.3.3.4	To increase the severity of the conditions for testing overload performance	
8.3.3.7 8.3.4.4	Permissible delay between the verification of temperature-rise and that of overload relays in test sequences I and II	
8.4.2	Calibration of releases other than over-current releases, shunt releases and undervoltage releases	
B.8	Applicability of tests when $I_{\Delta n} > 30$ A	
B.8.2.5	Extension of the test ambient temperature limits	
F.4.1.3	Test at a current lower than twice the current setting	

Annexe F

(normative)

Essais supplémentaires pour les disjoncteurs à protection électronique contre les surintensités

F.1 Domaine d'application

La présente annexe s'applique aux disjoncteurs destinés à être installés dans des circuits à courant alternatif et dont la protection contre les surintensités est assurée par des moyens électroniques, incorporés dans le disjoncteur et indépendants de la tension du réseau ou de toute source auxiliaire.

Les essais vérifient les performances des disjoncteurs dans les conditions d'environnement spécifiées dans cette annexe.

Les essais spécifiques concernant des dispositifs électroniques prévus pour des fonctions autres que la protection contre les surintensités ne sont pas couverts par cette annexe. Cependant, les essais de cette annexe doivent être effectués pour s'assurer que ces moyens électroniques n'affectent pas les performances des fonctions de protection contre les surintensités.

F.2 Liste des essais

Les essais spécifiés dans cette annexe sont des essais de type et sont additionnels aux essais de l'article 8.

NOTE Lorsqu'il existe une norme pour des conditions spécifiques d'environnement, il est fait systématiquement référence à cette norme, si elle est pertinente.

F.2.1 Essais de compatibilité électromagnétique (CEM)

F.2.1.1 Généralités

Les disjoncteurs avec protection contre les surintensités de type électronique doivent être essayés conformément au tableau F.1.

Annex F (normative)

Additional tests for circuit-breakers with electronic over-current protection

F.1 Scope

This annex applies to circuit-breakers intended to be installed on a.c. circuits and providing over-current protection by electronic means, incorporated in the circuit-breaker and independent of the line voltage or any auxiliary supply.

The tests verify the performance of the circuit-breaker under the environmental conditions stated in this annex.

Specific tests for electronic means intended for functions other than over-current protection are not covered by this annex. However, the tests of this annex shall be performed to ensure that these electronic means do not impair the performance of the over-current protective functions.

F.2 List of tests

Tests specified in this annex are type tests and are supplementary to the tests of clause 8.

NOTE Where a standard for specific environmental conditions exists, reference is systematically made to this standard, if relevant.

F.2.1 Electromagnetic compatibility (EMC) tests

F.2.1.1 General

Circuit-breakers with electronic over-current protection shall be tested according to table F.1.

Tableau F.1 - Prescriptions pour les essais de CEM

		Essais d'immunité		
Description	Norme fondamentale de référence	Niveau d'essal	Procédure d'essai	Critère de comportement
	Essa	als à basse fréquence	_	
Courants harmoniques	b	Circuit principal à courant alternatif: selon F.4.1	F.4.1	A
Creux de courant	c	Circuit principal à courant alternatif: selon F.4.2	F.4.2	B f
	Ess	ais à haute fréquence		
Décharges électrostatiques (DES)	CEI 61000-4-2	8 kV au contact 8 kV dans l'air	F.4.3	В
Champs électromagnétiques rayonnés	CEI 61000-4-3	10 V/m	F.4.4	A
Transitoires électriques rapides	CEI 61000-4-4	Circuit principal à courant alternatif: 4 kV	F.4.5	A e
en salves		Accès auxiliaires a: 2 kV		
Ondes de choc (1,2/50 µs - 8/20 µs)	CEI 61000-4-5	Circuit principal à courant alternatif:	F.4.6	В
		4 kV phase-terre; 2 kV phase-phase		
		Accès auxiliaires a:		
		2 kV phase-terre; 1 kV phase-phase		
Perturbations conduites, induites	CEI 61000-4-6	Circuit principal à courant alternatif: 10 V	F.4.7	A
par les champs radioélectriques		Accès auxiliaires a: 10 V		
		Essais d'émission	•	•
Description	Norme de référence	Limites Procédure d'es		re d'essai
Harmoniques	CEI 61000-3-2	Non requis (voir F.5.1)		
Fluctuations de tension	CEI 61000-3-3	Non requis (voir F.5.2)		
Emissions conduites aux fréquences radioélectriques 150 kHz à 30 MHz	CISPR 11/CISPR 22	A l'étude		
Emissions rayonnées aux fréquences radioélectriques 30 MHz à 1 GHz d	CISPR 11/CISPR 22	Classe A ou classe B, groupe 1 9	F.	5.4

- Accès auxiliaires: accès destinés à être reliés à des dispositifs auxiliaires, tels que déclencheurs à émission de courant, déclencheurs à minimum de tension, modules de communication, contacts auxiliaires et accès à courant alternatif ou à courant continu destinés à l'alimentation de circuits réalisant des fonctions auxiliaires, par exemple ne concernant pas les caractéristiques de protection contre les surcharges.
- b Les procédures d'essai d'immunité relatives aux phénomènes basse fréquence sont traitées dans d'autres normes et les procédures d'essai concernant les phénomènes harmoniques sont à l'étude. Pour le moment, une procédure d'essai spécifique est définie dans la présente norme en l'absence d'une procédure plus générale.
- c Une procédure d'essai spécifique est définie dans la présente norme en l'absence d'une norme fondamentale de référence appropriée.
- d Applicable seulement aux disjoncteurs intégrant des dispositifs de traitement (par exemple des microprocesseurs) ou des alimentations à découpage fonctionnant à des fréquences supérieures à 9 kHz.
- e Voir F.4.5.
- f Voir F.4.2.2.
- 9 Voir 7.3.1.

+A2:2001

Table F.1 - EMC test requirements

		Immunity tests		
Description	Reference basic standard	Test level	Test procedure	Performance criteria
	Lo	ow-frequency tests		
Harmonic currents	b	AC main circuit: according to F.4.1	F.4.1	A
Current dips	c	AC main circuit: according to F.4.2	F.4.2	B f
	Hi	gh-frequency tests		
Electrostatic discharges	IEC 61000-4-2	8 kV contact	F.4.3	В
(ESD)		8 kV air		
Radiated electromagnetic fields	IEC 61000-4-3	10 V/m	F.4.4	A
Electrical fast	IEC 61000-4-4	AC main circuit: 4 kV	F.4.5	Αθ
transient/burst (EFT/B)		Auxiliary ports a: 2 kV		
Surges (4. 3/50 up)	IEC 61000-4-5	AC main circuit:	F.4.6	В
(1,2/50 µs – 8/20 µs)		4 kV line to earth; 2 kV line to line		
		Auxiliary ports a:		
		2 kV line to earth; 1 kV line to line		
Conducted disturbances	IEC 61000-4-6	AC main circuit: 10 V	F.4.7	A
induced by radio- frequency fields		Auxiliary ports a: 10 V		
		Emission tests		
Description	Reference standard	Limits	Test procedure	
Harmonics	IEC 61000-3-2	Not required (see F.5.1)		
Voltage fluctuations	IEC 61000-3-3	Not required (see F.5.2)		
Conducted RF 150 kHz to 30 MHz	CISPR 11/CISPR 22	Under consideration		
Radiated RF 30 MHz to 1 GHz ^d	CISPR 11/CISPR 22	Class A or class B, group 1 9	F.	5.4

Auxiliary ports: ports intended to be connected to auxiliary devices such as shunt releases, undervoltage releases, communication modules, auxiliary switches and a.c.-d.c. ports intended to supply circuits performing auxiliary functions, i.e. not concerning the overload protection characteristics.

- e See F.4.5.
- f See F.4.2.2.
- 9 See 7.3.1.

Immunity test procedures regarding low-frequency phenomena are dealt with by other standards and test procedures dealing with harmonics are under consideration. For the time being, a specific test procedure is defined in this standard in the absence of a more general one.

c A specific test procedure is defined in this standard in the absence of an appropriate basic standard.

d Applicable only for circuit-breakers containing processing devices (e.g. microprocessors) or switched mode power supplies operating at frequencies greater than 9 kHz.

F.2.1.2 Critères de comportement

Les résultats des essais d'immunité doivent être classés sur la base des critères de comportement suivants:

Critère A:

Pendant l'essai, le disjoncteur étant chargé à 0,9 fois le courant de réglage ne doit pas déclencher, mais lorsqu'il est chargé à 2,0 fois le courant de réglage il doit déclencher dans un temps compris entre 0,9 fois la valeur minimale et 1,1 fois la valeur maximale de la caractéristique temps-courant fournie par le constructeur, et les fonctions de surveillance éventuelles doivent indiquer correctement l'état du disjoncteur.

Critère B:

Pendant l'essai, le disjoncteur étant chargé à 0,9 fois le courant de réglage ne doit pas déclencher. Après l'essai, le disjoncteur doit se comporter conformément à la caractéristique temps-courant du constructeur lorsqu'il est chargé à 2,0 fois le courant de réglage et les fonctions de surveillance éventuelles doivent indiquer correctement l'état du disjoncteur.

F.2.2 Aptitude au fonctionnement à des fréquences multiples

L'essai doit être effectué conformément à l'article F.6.

F.2.3 Essai de chaleur sèche

L'essai doit être effectué conformément à l'article F.7.

F.2.4 Essai de chaleur humide

L'essai doit être effectué conformément à l'article F.8.

F.2.5 Cycles de variation de température avec un taux de variation spécifié

L'essai doit être effectué conformément à l'article F.9.

F.3 Conditions générales d'essai

F.3.1 Généralités

Un disjoncteur pour essai est désigné ci-après EST, s'il y a lieu.

Les essais de la présente annexe peuvent être effectués indépendamment des séquences d'essais de l'article 8.

Les disjoncteurs de fréquence assignée 50 Hz – 60 Hz doivent être essayés indifféremment à l'une de ces fréquences.

Dans le cas d'une gamme de disjoncteurs avec protections électroniques identiques (y compris les dimensions, les composants, le montage des cartes de circuits imprimés et le boîtier, le cas échéant) et avec des capteurs de même conception, il est suffisant d'essayer uniquement l'échantillon de cette gamme de disjoncteurs avec le courant assigné le plus faible.

Un disjoncteur neuf peut être utilisé pour chaque essai ou un disjoncteur peut être utilisé pour plusieurs essais, au choix du constructeur.

F.2.1.2 Performance criteria

The results of immunity tests shall be classified on the basis of the following performance criteria:

Criterion A:

During the test, the circuit-breaker when loaded at 0,9 times the current setting shall not trip, and when loaded at 2,0 times the current setting, it shall trip within 0,9 times the minimum value and 1,1 times the maximum value of the manufacturer's time current characteristic, and the monitoring functions, if any, shall correctly indicate the status of the circuit-breaker.

Criterion B:

During the test, the circuit-breaker when loaded at 0,9 times the current setting shall not trip. After the test, the circuit-breaker shall comply with the manufacturer's time current characteristic when loaded at 2,0 times the current setting and the monitoring functions, if any, shall correctly indicate the status of the circuit-breaker.

F.2.2 Suitability for multiple frequencies

The test shall be performed in accordance with clause F.6.

F.2.3 Dry heat test

The test shall be performed in accordance with clause F.7.

F.2.4 Damp heat test

The test shall be performed in accordance with clause F.8.

F.2.5 Temperature variation cycles at a specified rate of change

The test shall be performed in accordance with clause F.9.

F.3 General test conditions

F.3.1 General

Where relevant, a circuit-breaker for test is hereinafter referred to as EUT.

Tests according to this annex may be performed separately from the test sequences of clause 8.

Circuit-breakers rated at 50 Hz – 60 Hz shall be tested at either one of the rated frequencies.

In the case of a range of circuit-breakers with identical electronic controls (including dimensions, components, printed circuit board assemblies and enclosure, if any) and the same design of sensors, it is sufficient to test only the sample of this circuit-breaker range with the lowest rated current.

A new circuit-breaker may be used for each test or one circuit-breaker may be used for several tests, at the manufacturer's discretion.

F.3.2 Essais de compatibilité électromagnétique

Pour les essais haute fréquence (F.4.3 à F.4.7 selon le tableau F.1), un disjoncteur par taille et par type de conception du capteur de courant doit être essayé; dans ce contexte, un changement du nombre de spires n'est pas considéré comme une conception différente.

Le courant de réglage I_{R} doit être réglé à la valeur minimale.

Les réglages des courants de déclenchement de courte durée et instantané doivent être ajustés, le cas échéant, chacun à la valeur minimale sans être inférieur à 2,5 fois I_R .

Après les essais d'émission, aucun contrôle du comportement n'est requis.

Les essais de CEM doivent être effectués au moyen d'un circuit d'essai approprié, comme spécifié dans les paragraphes qui suivent, en prenant en compte tous les dispositifs sensibles à la perte de phase.

Lorsqu'elle est prescrite, la liaison à la terre de l'enveloppe doit être réalisée comme dans les conditions d'installation normales, mais en prenant en compte les prescriptions relatives aux hautes fréquences conformément aux spécifications générales de «mise à la terre et liaisons équipotentielles» précisées dans la CEI 61000-5-2. En particulier, l'utilisation d'un «conducteur d'équipotentialité» consistant en un conducteur plat ayant un rapport longueur/ largeur inférieur ou égal à 5 est recommandée.

NOTE 1 Ce type de raccordement est repéré dans les figures par «HF».

Les spécifications (longueur, largeur, matériau) du conducteur d'équipotentialité doivent être consignées dans le rapport d'essai.

Pour les disjoncteurs ayant une protection électronique contre les surintensités, il peut être admis que les caractéristiques de déclenchement sont les mêmes, si les essais sont effectués

- sur chaque pôle individuel des disjoncteurs multipolaires;
- sur deux ou trois pôles en série;
- en raccordement triphasé.

NOTE 2 Cela permet de faire des comparaisons entre les résultats d'essai obtenus sur des combinaisons de pôles différentes, comme cela est exigé par les différentes séquences d'essais.

Pour les disjoncteurs intégrant une fonction à courant différentiel résiduel (voir aussi annexe B)

- en ce qui concerne F.4.5, F.4.6 et F.4.7, les essais sont effectués sur deux pôles dans le cas de disjoncteurs multipolaires afin d'éviter des déclenchements non intentionnels provoqués par un courant résiduel;
- en ce qui concerne F.4.1 et F.4.2, les essais peuvent être effectués sur n'importe quelle combinaison de pôles, à condition qu'un déclenchement non intentionnel provoqué par un courant résiduel soit évité.

F.4 Essais d'immunité

F.4.1 Courants harmoniques

F.4.1.1 Généralités

Ces essais s'appliquent aux disjoncteurs dont les moyens de détection du courant sont déclarés par le constructeur comme sensibles à la valeur efficace.

+A2:2001

F.3.2 Electromagnetic compatibility tests

For high-frequency tests (F.4.3 to F.4.7 according to table F.1), one circuit-breaker per frame size and per type of current sensor design shall be tested; a change of winding turns is not considered a different design in this context.

The current setting I_R shall be adjusted to the minimum value.

Short-time and instantaneous release settings shall each, if applicable, be adjusted to the minimum value but not less than 2,5 times I_R .

After emission tests, no performance checks are required.

EMC tests shall be performed with the appropriate test circuit, as specified in the following subclauses, taking into account any phase loss sensitive features.

Where specified, the ground connection of the enclosure shall be made as in normal installation conditions but taking into account the high-frequency requirements in accordance with the general "earthing and bonding" requirements indicated in IEC 61000-5-2. In particular, the use of a "bonding strap" consisting of a flat conductor having a length/width ratio less than or equal to 5 is recommended.

NOTE 1 Such a connection is referred to in the figures as "HF".

The specification (length, width, material) of the bonding strap shall be stated in the test report.

For circuit-breakers having electronic over-current protection, it may be assumed that the tripping characteristics are the same, whether tests are performed

- on individual phase poles of multipole circuit-breakers;
- on two- or three-phase poles in series;
- by three-phase connection.

NOTE 2 This enables comparisons to be made between test results obtained on different phase pole combinations as required by different test sequences.

For circuit-breakers incorporating a residual current function (see also annex B)

- in the cases of F.4.5, F.4.6 and F.4.7, tests are made on pairs of phase poles for multipole circuit-breakers to avoid unintentional tripping by residual current;
- in the cases of F.4.1 and F.4.2, tests may be made on any combination of phase poles, as long as unintentional tripping due to residual current is avoided.

F.4 Immunity tests

F.4.1 Harmonic currents

F.4.1.1 General

These tests apply to circuit-breakers for which the electronic current sensing means are stated by the manufacturer to be r.m.s. responsive.

Cette information doit être, soit marquée «eff.» sur le disjoncteur, soit mentionnée dans la documentation du constructeur, soit les deux.

L'EST doit être essayé à l'air libre à moins qu'il ne soit prévu pour être utilisé uniquement dans une enveloppe individuelle spécifiée, auquel cas il doit être essayé dans cette enveloppe. Les éléments comprenant les dimensions de l'enveloppe doivent être consignés dans le rapport d'essai.

Lorsque cela est applicable, les essais doivent être effectués à la fréquence assignée.

NOTE Les courants d'essai peuvent être fournis par une source d'alimentation basée sur l'emploi de thyristors (voir figure F.1), de noyaux saturés, d'alimentations programmables ou d'autres sources appropriées.

F.4.1.2 Courants d'essai

La forme d'onde du courant d'essai doit correspondre à l'une des deux options suivantes:

- option a): deux formes d'onde de courant appliquées successivement:
 - une forme d'onde consistant en une composante fondamentale et une composante harmonique de rang trois;
 - une forme d'onde consistant en une composante fondamentale et une composante harmonique de rang cinq.
- option b): une forme d'onde consistant en une composante fondamentale et des composantes harmoniques de rangs trois, cinq et sept.

Les courants d'essai doivent être

– pour l'option a):

essai de l'harmonique de rang trois et du facteur de crête

- 72 % de la fondamentale ≤ harmonique de rang trois ≤88 % de la fondamentale;
- facteur de crête: 2,0 ± 0,2;

essai de l'harmonique de rang cinq et du facteur de crête

- 45 % de la fondamentale ≤ harmonique de rang cinq ≤55 % de la fondamentale;
- facteur de crête: 1,9 ± 0,2;
- pour l'option b):

le courant d'essai, pour chaque période, est constitué de deux demi-ondes égales et opposées, définies comme suit:

- durée de conduction du courant de chaque demi-onde ≤21 % de la période;
- facteur de crête: ≥2,1.

NOTE 1 Le facteur de crête est la valeur de crête du courant divisée par la valeur efficace de l'onde de courant. Pour la formule pertinente, voir figure F.1.

NOTE 2 Ce courant d'essai a pour l'option b) au minimum le contenu harmonique suivant de la composante fondamentale:

- harmonique de rang trois >60 %;
- harmonique de rang cinq >14 %;
- harmonique de rang sept >7 %.

Il peut comporter des harmoniques de rang supérieur.

NOTE 3 L'onde du courant d'essai pour l'option b) peut être obtenue, par exemple, au moyen de deux thyristors tête-bêche (voir figure F.1).

NOTE 4 Les courants d'essai $0.9 I_R$ et $2.0 I_R$ (voir critère de comportement A) sont les valeurs efficaces des ondes composites.

This shall be indicated either by marking "r.m.s." on the circuit-breaker or given in the manufacturer's literature, or both.

The EUT shall be tested in free air unless it is intended to be used only in a specified individual enclosure, in which case it shall be tested in such an enclosure. Details including the dimensions of the enclosure shall be stated in the test report.

Where applicable, the tests shall be performed at the rated frequency.

NOTE The test currents may be generated by a source of power based on the use of thyristors (see figure F.1), saturated cores, programmable power supplies, or other appropriate sources.

F.4.1.2 Test currents

The test current waveform shall consist of one of the following two options:

- option a): two waveforms applied successively:
 - a waveform consisting of a fundamental and a third harmonic component;
 - · a waveform consisting of a fundamental and a fifth harmonic component.
- option b): a waveform consisting of a fundamental and a third, fifth and seventh harmonic component.

Test currents shall be

– for option a):

test of the third harmonic and peak factor

- 72 % of fundamental component ≤ third harmonic ≤88 % of fundamental component;
- peak factor: 2,0 ± 0,2;

test of the fifth harmonic and peak factor

- 45 % of fundamental component ≤ fifth harmonic ≤55 % of fundamental component;
- peak factor: 1,9 ± 0,2;
- for option b):

the test current, for each period, consists of two equal opposite half-waves defined as follows:

- current conduction time, for each half-wave is ≤21 % of the period;
- peak factor: ≥2,1.

NOTE 1 The peak factor is the peak value of the current divided by the r.m.s. value of the current wave. For the relevant formula, see figure F.1.

NOTE 2 This test current for option b) has at least the following harmonic content of the fundamental component:

- third harmonic >60 %;
- fifth harmonic >14 %;
- seventh harmonic >7 %.

Higher harmonics may also be present.

NOTE 3 The test current waveform for option b) may be produced by, for example, two back-to-back thyristors (see figure F.1).

NOTE 4 The test currents 0,9 I_R and 2,0 I_R (see performance criterion A) are the r.m.s. values of the composite waveforms.

F.4.1.3 Procédure d'essai

Les essais doivent être effectués sur n'importe quelle paire de pôles, conformément à 7.2.1.2.4 point b), parcourue par le courant d'essai sous toute tension convenable, les connexions étant réalisées conformément à la figure F.2. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, les connexions doivent être réalisées conformément aux figures F.3 ou F.4, selon le cas.

Les déclencheurs à minimum de tension éventuels doivent être, soit alimentés, soit retirés. Tous les autres auxiliaires doivent être débranchés pendant l'essai.

La durée de l'essai permettant de vérifier l'immunité aux déclenchements non intentionnels (à 0,9 fois le courant de réglage) doit être de 10 fois le temps de déclenchement, correspondant à deux fois le courant de réglage.

F.4.1.4 Résultats d'essai

Le critère de comportement A de F.2.1.2 doit s'appliquer.

F.4.2 Creux de courants

F.4.2.1 Procédure d'essai

L'EST doit être essayé à l'air libre à moins qu'il ne soit prévu pour être utilisé uniquement dans une enveloppe individuelle spécifiée, auquel cas il doit être essayé dans cette enveloppe. Les éléments comprenant les dimensions de l'enveloppe doivent être consignés dans le rapport d'essai.

Le circuit d'essai doit être conforme à la figure F.2 avec n'importe quelle paire de pôles de phase. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.3 ou F.4, selon le cas.

Les essais doivent être effectués avec un courant sinusoïdal sous toute tension convenable. Le courant doit être appliqué conformément à la figure F.5 et au tableau F.2, où I_R est le courant de réglage, I_D le creux de courant d'essai et T la période du courant sinusoïdal.

NOTE Une méthode de rechange pour effectuer les essais sur les commandes électroniques seules est à l'étude.

La durée de chaque essai doit être la plus petite des deux valeurs suivantes: entre trois et quatre fois le temps de déclenchement maximal correspondant à deux fois le courant de réglage ou 10 min.

F.4.1.3 Test procedure

The tests shall be performed on two-phase poles, chosen at random in accordance with item b) of 7.2.1.2.4 carrying the test current at any convenient voltage, connections being in accordance with figure F.2. For releases with a phase loss sensitive feature, connections shall be made in accordance with figures F.3 or F.4, as applicable.

Undervoltage releases, if any, shall either be energized or disabled. All other auxiliaries shall be disconnected during the test.

The duration of the test to verify the immunity to unwanted tripping (at 0,9 times the current setting) shall be 10 times the tripping time, which corresponds to twice the current setting.

F.4.1.4 Test results

Performance criterion A of F.2.1.2 shall apply.

F.4.2 Current dips

F.4.2.1 Test procedure

The EUT shall be tested in free air unless it is intended to be used only in a specified individual enclosure, in which case it shall be tested in such an enclosure. Details including the dimensions of the enclosure shall be stated in the test report.

The test circuit shall be in accordance with figure F.2 on two-phase poles chosen at random. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.3 or F.4, as applicable.

The tests shall be performed with a sinusoidal current at any convenient voltage. The current applied shall be according to figure F.5 and to table F.2 where I_R is the setting current, I_D is the dip test current and T is the period of the sinusoidal current.

NOTE An alternative method to perform the tests on the electronic controls alone is under consideration.

The duration of each test shall be between three and four times the maximum tripping time corresponding to twice the current setting or 10 min, whichever is the lower.

+A2:2001

Tableau F.2 - Paramètres d'essais pour les creux et interruptions de courant

Essai n°	l _D	Δt
1		0,5 T
2	0	1 <i>T</i>
3		5 T
4		25 T
5		50 T
6		10 T
7	0,4 I _R	25 T
8		50 T
9		10 T
10	0,7 I _R	25 T
11		50 T

F.4.2.2 Résultats d'essai

Le critère de comportement B de F.2.1.2 doit s'appliquer, à l'exception du contrôle après essai qui n'est pas requis.

F.4.3 Décharges électrostatiques

Les essais doivent être effectués conformément à la CEI 61000-4-2 et aux prescriptions de F.4.3.1, F.4.3.2 et F.4.3.3.

F.4.3.1 Conditions d'essai

L'EST doit être monté dans une enveloppe métallique comme cela est indiqué aux figures F.6, F.7 ou F.8, selon le cas.

Les distances entre l'EST et l'enveloppe métallique doivent être de 0,1 m, avec une tolérance de $^{+10}_{}$ %, excepté pour la face avant qui doit être installée comme en utilisation normale conformément aux instructions du constructeur, tout en conservant les dimensions de l'ouverture au minimum.

Le circuit d'essai doit être conforme à la figure F.2. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.3 ou F.4, selon le cas.

Le cheminement du jeu de barres indiqué aux figures F.6, F.7 et F.8 peut être modifié dans la mesure où les distances de 0,1 m, avec une tolérance de $^{+10}_{0}$ %, à l'enveloppe métallique sont maintenues. La configuration réelle utilisée doit être indiquée dans le rapport d'essai.

F.4.3.2 Procédure d'essai

L'EST doit être essayé comme un équipement normalement posé au sol (voir 7.1.2 de la CEI 61000-4-2), l'installation d'essai étant celle indiquée à la figure F.9.

Les décharges directes et indirectes doivent être appliquées conformément à la CEI 61000-4-2.

Table F.2 - Test parameters for current dips and interruptions

Test No.	l _D	Δt
1		0,5 T
2	0	1 <i>T</i>
3		5 T
4		25 T
5		50 T
6		10 T
7	0,4 I _R	25 T
8		50 T
9		10 T
10	0,7 / _R	25 T
11		50 T

F.4.2.2 Test results

Performance criterion B of F.2.1.2 shall apply, except that the after-test verification is not required.

F.4.3 Electrostatic discharges

Tests shall be performed in accordance with IEC 61000-4-2 and the requirements of F.4.3.1, F.4.3.2 and F.4.3.3.

F.4.3.1 Test conditions

The EUT shall be mounted in a metallic enclosure as shown in figures F.6, F.7 or F.8, as applicable.

The distances between the EUT and the metallic enclosure shall be 0,1 m with a tolerance of $^{+10}_{0}$ %, except for the front face which shall be installed as in normal use according to the manufacturer's instructions, keeping the dimensions of the aperture to a minimum.

The test circuit shall be in accordance with figure F.2. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.3 or F.4, as applicable.

The busbar routing shown in figures F.6, F.7 and F.8 may be varied providing the 0,1 m with a tolerance of $^{+10}_{0}$ %, dimensions to the enclosure are maintained. The actual configuration used shall be shown in the test report.

F.4.3.2 Test procedure

The EUT shall be tested as a floor-standing equipment (see 7.1.2 of IEC 61000-4-2), the test set-up being as shown in figure F.9.

Direct and indirect discharges shall be applied in accordance with IEC 61000-4-2.

Les essais doivent être effectués

- avec des décharges au contact à 8 kV;
- avec des décharges dans l'air à 8 kV.

Les essais de décharge directe doivent être effectués seulement sur les parties du disjoncteur normalement accessibles à l'opérateur, telles que moyens de réglage, claviers, afficheurs, boutons poussoirs, etc. Les points d'application doivent être consignés dans le rapport d'essai.

Si une décharge directe sur l'EST (dans l'air ou au contact) se produit sur l'un quelconque des points d'essai, l'essai à ce point est répété 10 fois, pour les deux polarités, à des intervalles ≥1 s.

Les décharges indirectes doivent être appliquées aux points choisis sur la surface de l'enveloppe, l'essai à ces points est répété 10 fois, pour les deux polarités, à des intervalles ≥1 s.

F.4.3.3 Résultats d'essai

Le critère de comportement B de F.2.1.2 doit s'appliquer.

F.4.4 Champs électromagnétiques rayonnés

Les essais doivent être effectués conformément à la CEI 61000-4-3 et aux prescriptions de F.4.4.1, F.4.4.2 et F.4.4.3.

F.4.4.1 Conditions d'essai

L'EST doit être essayé à l'air libre à moins qu'il ne soit prévu pour être utilisé uniquement dans une enveloppe individuelle spécifiée, auquel cas il doit être essayé dans cette enveloppe. Les éléments comprenant les dimensions de l'enveloppe doivent être consignés dans le rapport d'essai.

L'EST doit être placé à une hauteur par rapport au sol de 1 m \pm 0,1 m.

L'EST doit être essayé seulement en face avant, l'installation d'essai étant celle indiquée à la figure F.10.

Lorsqu'une enveloppe est utilisée, elle doit être reliée au plan de terre, conformément aux instructions du constructeur.

Le circuit d'essai doit être conforme à la figure F.2. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.3 ou F.4, selon le cas.

Pour permettre la répétitivité, la composition de l'installation d'essai réelle, incluant les jeux de barres d'alimentation, le transformateur, etc. doit être consignée dans le rapport d'essai.

Le niveau d'essai doit être de 10 V/m.

Les essais doivent être effectués avec une polarisation horizontale et une polarisation verticale de l'antenne.

+A2:2001

with contact discharge at 8 kV;

- with air discharge at 8 kV.

The tests shall be performed

The direct discharge tests shall be performed only on parts of the circuit-breaker normally accessible to the user, such as setting means, keyboards, displays, push buttons, etc. The application points shall be stated in the test report.

If a direct discharge onto the EUT (air or contact) occurs at any test point, the test at such a point is repeated 10 times, for both polarities, at intervals of ≥ 1 s.

Indirect discharges shall be applied at selected points on the surface of the enclosure, the test at such points is repeated 10 times, for both polarities, at intervals of ≥ 1 s.

F.4.3.3 Test results

Performance criterion B of F.2.1.2 shall apply.

F.4.4 Radiated electromagnetic fields

Tests shall be performed in accordance with IEC 61000-4-3 and the requirements of F.4.4.1, F.4.4.2 and F.4.4.3.

F.4.4.1 Test conditions

The EUT shall be tested in free air unless it is intended to be used only in a specified individual enclosure, in which case it shall be tested in such an enclosure. Details including the dimensions of the enclosure shall be stated in the test report.

The height from the floor of the EUT shall be 1 m \pm 0,1 m.

The EUT shall be tested on the front face only, the test set-up being as shown in figure F.10.

Where an enclosure is used, it shall be connected to the ground plane, according to the manufacturer's instructions.

The test circuit shall be in accordance with figure F.2. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.3 or F.4, as applicable.

To enable repeatability, the actual test set-up including supply bars, transformer, etc. shall be stated in the test report.

The test level shall be 10 V/m.

Tests shall be performed with both horizontal and vertical antenna polarization.

F.4.4.2 Procédure d'essai

Les essais doivent être réalisée comme suit :

a) Pour vérifier la résistance aux déclenchements intempestifs, l'EST doit être alimenté par un courant de 0,9 fois le courant de réglage, et la fréquence d'essai doit balayer la bande de fréquences de 80 MHz à 1 000 MHz conformément à l'article 8 de la CEI 61000-4-3.

Le temps de palier pour chaque fréquence doit être compris entre 500 ms et 1 000 ms, et la valeur du pas de fréquence doit être de 1 % de la fréquence précédente.

Le temps de palier réel doit être consigné dans le rapport d'essai.

b) Pour vérifier les caractéristiques temps-courant, l'EST doit être alimenté par un courant de 2,0 fois le courant de réglage.

Le temps de déclenchement doit être alors mesuré.

L'essai doit être effectué aux fréquences suivantes: 80; 100; 120; 180; 240; 320; 480; 640 et 960 MHz, le courant d'essai étant appliqué après stabilisation du champ à chaque fréquence.

F.4.4.3 Résultats d'essai

Le critère de comportement A de F.2.1.2 s'applique.

F.4.5 Transitoires électriques rapides en salves (EFT/B)

Les essais doivent être effectués conformément à la CEI 61000-4-4 et aux prescriptions de F.4.5.1, F.4.5.2 et F.4.5.3.

F.4.5.1 Conditions d'essai

L'EST doit être monté dans une enveloppe métallique comme cela est indiqué aux figures F.6, F.7 ou F.8, selon le cas.

Les distances entre l'EST et l'enveloppe métallique doivent être de 0,1 m, avec une tolérance de $^{+10}_{}$ %, excepté pour la face avant qui doit être installée comme en utilisation normale conformément aux instructions du constructeur, tout en conservant les dimensions de l'ouverture au minimum.

L'enveloppe métallique doit être reliée au plan de terre (voir F.3.2).

Le circuit d'essai doit être conforme à la figure F.11. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.12 ou F.13, selon le cas.

Le niveau d'essai doit être de 4 kV sur les circuits principaux et sur tout auxiliaire relié au circuit principal, et de 2 kV pour tous les accès d'entrée/sortie auxiliaires.

F.4.5.2 Procédure d'essai

L'EST doit être essayé comme un équipement normalement posé au sol (voir 7.2.1 de la CEI 61000-4-4), l'installation d'essai étant celle indiquée à la figure F.14. Les perturbations doivent être injectées à une distance comprise entre 0,9 m et 1 m de l'EST.

NOTE 1 Il est conseillé d'alimenter le transformateur via un réseau de couplage-découplage afin d'éviter les perturbations sur le réseau d'alimentation.

NOTE 2 La distance d'injection des perturbations est définie de façon à permettre la répétitivité de l'essai.

F.4.4.2 Test procedure

Tests shall be performed as follows:

a) To verify the resistance against unwanted tripping, the EUT shall be supplied with a current of 0,9 times the current setting and the test frequency swept over the range of 80 MHz to 1 000 MHz in accordance with clause 8 of IEC 61000-4-3.

The dwell time for each frequency shall be between 500 ms and 1 000 ms and the step size shall be 1 % of the previous frequency.

The actual dwell time shall be stated in the test report.

b) To verify the time/current characteristics, the EUT shall be supplied with a current of 2,0 times the current setting.

The tripping time shall then be measured.

The test shall be performed at the following frequencies: 80; 100; 120; 180; 240; 320; 480; 640 and 960 MHz, the test current being applied after the field at each frequency has stabilized.

F.4.4.3 Test results

Performance criterion A of F.2.1.2 shall apply.

F.4.5 Electrical fast transient/burst (EFT/B)

Tests shall be performed in accordance with IEC 61000-4-4 and with the requirements of F.4.5.1, F.4.5.2 and F.4.5.3.

F.4.5.1 Test conditions

The EUT shall be mounted in a metallic enclosure as shown in figures F.6, F.7, or F.8, as applicable.

The distances between the EUT and the metallic enclosure shall be 0,1 m with a tolerance of $^{+10}_{0}$ %, except for the front face which shall be installed as in normal use according to the manufacturer's instructions, keeping the dimensions of the aperture to a minimum.

The metallic enclosure shall be connected to the ground plane (see F.3.2).

The test circuit shall be in accordance with figure F.11. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.12 or F.13, as applicable.

The test level shall be 4 kV on main circuits and on any auxiliary connected to the main circuit, and 2 kV for all auxiliary input/output ports.

F.4.5.2 Test procedure

The EUT shall be tested as a floor-standing equipment (see 7.2.1 of IEC 61000-4-4), the test set-up being shown in figure F.14. Disturbances shall be injected at a distance between 0,9 m and 1 m from the EUT.

NOTE 1 It is advisable to supply the transformer via a coupling-decoupling network to avoid disturbances on mains network.

NOTE 2 The disturbance injection distance is defined in order to ensure test repeatability.

Pour les accès du circuit principal à courant alternatif, la méthode d'injection directe doit être utilisée. Pour les accès des auxiliaires, le réseau de couplage-découplage ou la pince d'injection doit être utilisée, selon le cas.

Les perturbations aux accès du circuit principal à courant alternatif doivent être appliquées sur n'importe quel pôle de phase, l'EST étant alimenté à partir des autres pôles de phase, conformément à la figure F.11. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, l'essai doit être effectué conformément à la figure F.12 pour une connexion des trois pôles en série et sur une phase quelconque pour l'essai triphasé indiqué à la figure F.13.

Les essais doivent être réalisée comme suit :

- a) Pour vérifier la résistance aux déclenchements intempestifs, l'EST doit être alimenté avec un courant de 0,9 fois le courant de réglage pendant l'application de la perturbation.
 - La perturbation doit être appliquée pendant 1 min.
- b) Pour vérifier les caractéristiques temps-courant, le disjoncteur doit être alimenté avec un courant de 2,0 fois le courant de réglage pendant l'application de la perturbation.

F.4.5.3 Résultats d'essai

Le critère de comportement A de F.2.1.2 doit s'appliquer. Toutefois des changements temporaires des fonctions de surveillance (par exemple l'allumage non intentionnel d'une diode électroluminescente) pendant l'essai sont acceptables, auquel cas le fonctionnement correct des fonctions de surveillance doit être vérifié après les essais.

F.4.6 Ondes de choc

Les essais doivent être effectués conformément à la CEI 61000-4-5 et aux prescriptions de F.4.6.1, F.4.6.2 et F.4.6.3.

F.4.6.1 Conditions d'essai

L'EST doit être monté dans une enveloppe métallique comme cela est indiqué aux figures F.6, F.7 ou F.8, selon le cas.

Les distances entre l'EST et l'enveloppe métallique doivent être de 0,1 m avec une tolérance de $^{+10}_{}$ %, excepté pour la face avant qui doit être installée comme en utilisation normale conformément aux instructions du constructeur, tout en conservant les dimensions de l'ouverture au minimum.

L'enveloppe métallique doit être reliée au plan de terre (voir F.3.2).

Le circuit d'essai pour les accès du circuit principal à courant alternatif doit être conforme à la figure F.15 (phase-terre) ou à la figure F.18 (phase-phase).

Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.16 (phase-terre) et F.19 (phase-phase) ou F.17 (phase-terre) et F.20 (phase-phase), selon le cas.

NOTE II est conseillé d'alimenter le transformateur via un réseau de couplage-découplage afin d'éviter les perturbations sur le réseau d'alimentation.

Le niveau d'essai doit être de 4 kV (phase-terre) et 2 kV (phase-phase) pour le circuit principal à courant alternatif et pour les auxiliaires prévus pour être reliés au circuit principal, et de 2 kV (phase-terre) et 1 kV (phase-phase) pour les auxiliaires qui ne sont pas prévus pour être reliés au circuit principal.

For the a.c. main circuit, the direct injection method shall be used. For auxiliary ports the coupling-decoupling network or clamp injection method shall be used, as applicable.

On the a.c. mains port, the disturbance shall be applied on one phase pole chosen at random, the EUT being supplied from the other phase poles, in accordance with figure F.11. For releases which have a phase loss sensitive feature, the test shall be performed as shown in figure F.12 for the three-phase poles in series connection and on a phase chosen at random for the three phase connection shown in figure F.13.

Tests shall be performed as follows:

- a) To verify the resistance against unwanted tripping, the EUT shall be supplied with a current of 0,9 times the current setting during the application of the disturbance.
 - The disturbance shall be applied for a duration of 1 min.
- b) To verify the time/current characteristics the circuit-breaker shall be supplied with a current of 2,0 times the current setting during the application of the disturbance.

F.4.5.3 Test results

Performance criterion A of F.2.1.2 shall apply. However, temporary changes to the monitoring functions (e.g. unwanted LED illumination) during the tests are acceptable, in which case the correct functioning of the monitoring shall be verified after the tests.

F.4.6 Surges

Tests shall be performed in accordance with IEC 61000-4-5 and with the requirements of F.4.6.1, F.4.6.2 and F.4.6.3.

F.4.6.1 Test conditions

The EUT shall be mounted in a metallic enclosure as shown in figures F.6, F.7 or F.8, as applicable.

The distances of the EUT to the metallic enclosure shall be 0,1 m with a tolerance $^{+10}_{0}$ %, except for the front face which shall be installed as in normal use according to the manufacturer's instructions, keeping the dimensions of the aperture to a minimum.

The metallic enclosure shall be connected to the ground plane (see F.3.2).

The test circuit for the a.c. mains port shall be in accordance with figure F.15 (line-to-earth) or figure F.18 (line-to-line).

For releases with a phase loss sensitive feature, the test circuits shall be in accordance with figures F.16 (line-to-earth) and F.19 (line-to-line) or F.17 (line-to-earth) and F.20 (line-to-line), as applicable.

NOTE It is advisable to supply the transformer via a coupling-decoupling network in order to avoid disturbances on the mains network.

The test level shall be 4 kV (line-to-earth) and 2 kV (line-to-line) on the a.c. main circuit and those auxiliaries intended to be connected to the main circuit, 2 kV (line-to-earth) and 1 kV (line-to-line) for those auxiliaries not intended to be connected to the main circuit.

F.4.6.2 Procédure d'essai

Les perturbations aux accès du circuit principal à courant alternatif doivent être appliquées sur n'importe quel pôle de phase, l'EST étant alimenté à partir des autres pôles de phase, conformément aux figures F.15 (phase-terre) et F.18 (phase-phase). Pour les déclencheurs comportant un dispositif sensible à la perte de phase, l'essai doit être effectué conformément aux figures F.16 (phase-terre) et F.19 (phase-phase) pour la connexion des trois pôles de phase en série et sur une phase quelconque pour l'essai triphasé indiqué aux figures F.17 (phase-terre) et F.20 (phase-phase).

Les perturbations aux accès auxiliaires doivent être injectées en utilisant les réseaux de couplage-découplage comme spécifié à la figure 6 et à la figure 7 de la CEI 61000-4-5.

Des impulsions de polarités positive et négative doivent être appliquées, avec un déphasage de 0° et de 90°.

Une série de cinq impulsions est appliquée pour chaque polarité et chaque déphasage (soit un total de 20 impulsions), l'intervalle séparant deux impulsions étant approximativement de 1 min. Un intervalle plus court peut être utilisé en accord avec le constructeur.

Le disjoncteur est alimenté avec un courant de 0,9 fois le courant de réglage pendant l'application des impulsions.

F.4.6.3 Résultats d'essai

Le critère de comportement B de F.2.1.2 doit s'appliquer.

F.4.7 Perturbations conduites, induites par les champs radioélectriques (mode commun)

Les essais doivent être effectués conformément à la CEI 61000-4-6 et aux prescriptions de F.4.7.1, F.4.7.2 et F.4.7.3.

F.4.7.1 Conditions d'essai

L'EST doit être essayé à l'air libre à moins qu'il ne soit prévu pour être utilisé uniquement dans une enveloppe individuelle spécifiée, auquel cas il doit être essayé dans cette enveloppe. Les éléments concernant les dimensions de l'enveloppe doivent être consignés dans le rapport d'essai.

Lorsqu'une enveloppe est utilisée, elle doit être reliée au plan de terre, conformément aux instructions du constructeur.

Pour permettre la répétitivité, l'installation d'essai réelle, incluant les jeux de barres d'alimentation, le transformateur, etc. doit être consignée dans le rapport d'essai.

Les essais doivent être effectués sur le circuit principal et sur les auxiliaires prévus pour être reliés au circuit principal.

L'installation d'essai doit être conforme aux figures F.21, F.22, ou F.23, selon le cas.

Les perturbations doivent être injectées en utilisant un réseau de couplage-découplage M1 ou M2 selon 6.2.2 de la CEI 61000-4-6, selon le cas (voir les figures F.21, F.22 et F.23).

F.4.6.2 Test procedure

On a.c. mains ports, the disturbance shall be applied on one phase pole chosen at random, EUT being supplied from the other two phase poles, in accordance with figure F.15 (line-to-earth) and F.18 (line-to-line). For releases which have a phase loss sensitive feature, the test shall be performed as shown in figure F.16 (line-to-earth) and F.19 (line-to-line) for the three-phase poles in a series connection or on a phase chosen at random for the three-phase connection shown in figure F.17 (line-to-earth) and F.20 (line-to-line).

Auxiliary port disturbances shall be injected by means of coupling-decoupling networks as specified in figure 6 and figure 7 of IEC 61000-4-5.

Pulses with both positive and negative polarity shall be applied, the phase angles being 0° and 90°.

A series of five pulses is applied for each polarity and each phase angle (total number of pulses: 20), the interval between two pulses being approximately 1 min. A shorter interval may be used by agreement with the manufacturer.

The circuit-breaker is supplied with a current of 0,9 times the current setting during the application of the pulses.

F.4.6.3 Test results

Performance criterion B of F.2.1.2 shall apply.

F.4.7 Conducted disturbances induced by radio-frequency fields (common mode)

Tests shall be performed according to IEC 61000-4-6 and the requirements of F.4.7.1, F.4.7.2 and F.4.7.3.

F.4.7.1 Test conditions

The EUT shall be tested in free air unless it is intended to be used only in a specified individual enclosure, in which case it shall be tested in such an enclosure. Details including the dimensions of the enclosure shall be stated in the test report.

Where an enclosure is used, it shall be connected to the ground plane, according to the manufacturer's instructions.

To enable repeatability, the actual test set-up including supply bars, transformer, etc. shall be stated in the test report.

Tests shall be performed on the main circuit and those auxiliaries intended to be connected to the main circuit.

The test set-up shall be according to figures F.21, F.22 or F.23, as applicable.

The disturbance shall be injected by means of a coupling-decoupling network M1 or M2 according to 6.2.2 of IEC 61000-4-6, as applicable (see figures F.21, F.22 and F.23).

60947-2 © CEI:1995+A1:1997

+A2:2001

Le rapport entre la section «S» (mm²) du câble de connexion et sa hauteur «h» (cm) par rapport au plan de terre doit être de 1:5.

Le circuit d'essai pour les accès du circuit principal à courant alternatif doit être conforme à la figure F.21. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.22 ou F.23, selon le cas.

Le niveau d'essai doit être de 10 V pour les accès du circuit principal et des auxiliaires.

F.4.7.2 Procédure d'essai

Les essais doivent être réalisés comme suit:

- a) Pour vérifier la résistance aux déclenchements intempestifs, l'EST doit être alimenté par un courant de 0,9 fois le courant de réglage et la fréquence d'essai doit balayer la bande de fréquences 150 kHz à 80 MHz conformément à l'article 8 de la CEI 61000-4-6.
 - Le temps de palier à chaque fréquence doit être compris entre 500 ms et 1 000 ms, et la valeur du pas de fréquence doit être de 1 % de la fréquence précédente.
 - Le temps de palier réel doit être consigné dans le rapport d'essai.
- b) Pour vérifier les caractéristiques temps-courant, l'EST doit être alimenté par un courant de 2,0 fois le courant de réglage.
 - Le temps de déclenchement doit être mesuré.

L'essai doit être effectué aux fréquences suivantes: 0,150; 0,300; 0,450; 0,600; 0,900; 1,20; 1,80; 2,40; 3,60; 4,80; 7,20; 9,60; 12,0; 19,2; 27,0; 49,4; 72,0 et 80,0 MHz, le courant d'essai étant appliqué après stabilisation du niveau de la tension perturbatrice à chaque fréquence.

F.4.7.3 Résultats d'essai

Le critère de comportement A de F.2.1.2 doit s'appliquer.

F.5 Essais d'émission

F.5.1 Harmoniques

Les circuits des protections électroniques fonctionnent à très basse puissance créant ainsi des perturbations négligeables; en conséquence, aucun essai n'est requis.

F.5.2 Fluctuations de tension

Les circuits des protections électroniques fonctionnent à très basse puissance créant ainsi des perturbations négligeables; en conséquence, aucun essai n'est requis.

F.5.3 Perturbations conduites aux fréquences radioélectriques (150 kHz - 30 MHz)

A l'étude.

F.5.4 Perturbations rayonnées aux fréquences radioélectriques (30 MHz – 1 GHz)

Les essais doivent être effectués conformément au CISPR 11 et aux prescriptions de F.5.4.1, F.5.4.2 et F.5.4.3.

The ratio between the cross-section "S" (mm²) of the connecting cable and its height "h" (cm) from the ground plane shall be 1:5.

The test circuit for the a.c. main circuit port shall be in accordance with figure F.21. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.22 or F.23, as applicable.

The test level shall be 10 V for main circuit and auxiliary ports.

F.4.7.2 Test procedure

Tests shall be performed as follows:

a) To verify the resistance against unwanted tripping, the EUT shall be supplied with a current of 0,9 times the current setting and the test frequency swept over the range 150 kHz to 80 MHz in accordance with clause 8 of IEC 61000-4-6.

The dwell time for each frequency shall be between 500 ms and 1 000 ms, and the frequency step size shall be 1 % of the previous frequency.

The actual dwell time shall be stated in the test report.

b) To verify the time current characteristics, the EUT shall be supplied with a current of 2,0 times the current setting.

The tripping time shall be measured.

The test shall be performed at the following frequencies: 0,150; 0,300; 0,450; 0,600; 0,900; 1,20; 1,80; 2,40; 3,60; 4,80; 7,20; 9,60; 12,0; 19,2; 27,0; 49,4; 72,0 and 80,0 MHz, the test current being applied after the level of the disturbing voltage at each frequency has stabilized.

F.4.7.3 Test results

Performance criterion A of F.2.1.2 shall apply.

F.5 Emission tests

F.5.1 Harmonics

The electronic control circuits operate at very low power and hence create negligible disturbances; therefore no tests are required.

F.5.2 Voltage fluctuations

The electronic control circuits operate at very low power and hence create negligible disturbances; therefore no tests are required.

F.5.3 Conducted RF disturbances (150 kHz - 30 MHz)

Under consideration.

F.5.4 Radiated RF disturbances (30 MHz – 1 GHz)

Tests shall be performed according to CISPR 11 and the requirements of F.5.4.1, F.5.4.2 and F.5.4.3.

60947-2 © CEI:1995+A1:1997 +A2:2001

F.5.4.1 Conditions d'essai

L'EST doit être essayé à l'air libre à moins qu'il ne soit prévu pour être utilisé uniquement dans une enveloppe individuelle spécifiée, auquel cas il doit être essayé dans cette enveloppe. Les éléments concernant les dimensions de l'enveloppe doivent être consignés dans le rapport d'essai.

NOTE Il est reconnu que la présence d'une enveloppe peut provoquer des interférences à certaines fréquences.

L'EST doit être placé à une hauteur par rapport au sol de 1 m \pm 0,1 m.

Le circuit d'essai doit être conforme à la figure F.2. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.3 ou F.4, selon le cas.

L'installation d'essai est indiquée à la figure F.24.

Pour permettre la répétitivité, l'installation d'essai réelle, incluant les jeux de barres d'alimentation, le transformateur, etc. doit être consignée dans le rapport d'essai.

F.5.4.2 Procédure d'essai

Les déclencheurs à minimum de tension éventuels doivent être, soit alimentés, soit retirés. Tous les autres auxiliaires doivent être débranchés pendant l'essai.

F.5.4.3 Résultats d'essai

Le paragraphe 7.3.1 est applicable.

F.6 Aptitude au fonctionnement à des fréquences multiples

L'essai vérifie les caractéristiques de déclenchement des disjoncteurs déclarés comme étant aptes au fonctionnement à des fréquences multiples. Il ne s'applique pas aux disjoncteurs de fréquence assignée 50 Hz – 60 Hz seulement (voir l'article F.3).

F.6.1 Conditions d'essai

Les essais doivent être effectués à chaque fréquence assignée ou, lorsqu'une bande de fréquences assignées est déclarée, à la plus basse et à la plus haute fréquence assignée.

F.6.2 Procédure d'essai

Les essais doivent être effectués sur n'importe quelle paire de pôles sous toute tension convenable.

Le circuit d'essai doit être conforme à la figure F.2. Pour les déclencheurs comportant un dispositif sensible à la perte de phase, le circuit d'essai doit être conforme aux figures F.3 ou F.4, selon le cas.

Les déclencheurs à minimum de tension éventuels doivent être, soit alimentés, soit retirés. Tous les autres auxiliaires doivent être débranchés pendant l'essai.

Les réglages des courants de déclenchement de courte durée et instantané doivent être chacun, si cela convient, réglés à 2,5 fois le courant de réglage. Si cette valeur de réglage n'est pas disponible, les réglages doivent être effectués à la valeur immédiatement supérieure.

60947-2 © IEC:1995+A1:1997 +A2:2001

F.5.4.1 Test conditions

The EUT shall be tested in free air unless it is intended to be used only in a specified individual enclosure, in which case it shall be tested in such an enclosure. Details including the dimensions of the enclosure shall be stated in the test report.

NOTE It is recognized that the presence of an enclosure may cause interference at certain frequencies.

The height from the floor of the EUT shall be 1 m \pm 0,1 m.

The test circuit shall be in accordance with figure F.2. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.3 or F.4, as applicable.

The test set-up is shown in figure F.24.

To enable repeatability, the actual test set-up including supply bars, transformer, etc. shall be stated in the test report.

F.5.4.2 Test procedure

Undervoltage releases, if any, shall either be energized or disabled. All other auxiliaries shall be disconnected during the test.

F.5.4.3 Test results

Subclause 7.3.1 applies.

F.6 Suitability for multiple frequencies

The test verifies the tripping characteristics of circuit-breakers declared as suitable for multiple frequencies. It does not apply to circuit-breakers rated at 50 Hz – 60 Hz only (see clause F.3).

F.6.1 Test conditions

The tests shall be performed at each rated frequency or, when a range of rated frequencies is declared, at the lowest and the highest rated frequencies.

F.6.2 Test procedure

Tests shall be performed on any pair of phase-poles chosen at random at any convenient voltage.

The test circuit shall be in accordance with figure F.2. For releases with a phase loss sensitive feature, the test circuit shall be in accordance with figures F.3 or F.4, as applicable.

Under-voltage releases, if any, shall either be energized or disabled. All other auxiliaries shall be disconnected during the test.

The short-time and instantaneous trip current settings shall each, if relevant, be adjusted to 2,5 times the current setting. If this setting is not available, the next closest higher setting shall be used.

60947-2 © CEI:1995+A1:1997 +A2:2001

Les essais doivent être réalisés comme suit :

- a) Un courant de 0,95 fois le courant conventionnel de non-déclenchement (voir tableau 6) est appliqué pendant un temps égal à 10 fois le temps de déclenchement correspondant à 2,0 fois le courant de réglage.
- b) Immédiatement après l'essai de a), un courant de 1,05 fois le courant conventionnel de déclenchement est appliqué (voir tableau 6).
- c) Un essai supplémentaire, à partir de l'état froid, est effectué à 2,0 fois le courant de réglage.

F.6.3 Résultats d'essai

Pour chaque fréquence d'essai, les caractéristiques de déclenchement en surcharge doivent être conformes aux spécifications suivantes:

- pour l'essai a) aucun déclenchement ne doit se produire;
- pour l'essai b) le déclenchement doit se produire pendant le temps conventionnel (voir tableau 6);
- pour l'essai c) le déclenchement doit intervenir entre 1,1 fois le temps maximal et 0,9 fois le temps minimal de la caractéristique temps-courant déclarée par le constructeur.

F.7 Essai de chaleur sèche

F.7.1 Procédure d'essai

L'essai doit être effectué sur le disjoncteur, conformément à 7.2.2, au courant assigné maximal pour une taille donnée, sur tous les pôles de phase, à une température ambiante de 40 °C. La durée de l'essai, lorsque l'équilibre thermique est atteint, doit être de 168 h.

Les couples de serrage appliqués aux bornes doivent être conformes aux instructions du constructeur. En l'absence de ces instructions, le tableau 4 de la CEI 60947-1 doit s'appliquer.

Comme variante, l'essai peut également être effectué comme suit:

- mesurer et enregistrer l'échauffement maximal de l'air au voisinage des composants électroniques pendant l'essai d'échauffement de la séquence d'essais l;
- installer les protections électroniques dans la chambre d'essai;
- alimenter les protections électroniques avec leurs valeurs d'alimentation d'entrée;
- régler la température de la chambre d'essai à une valeur de 40 K au-dessus de l'échauffement enregistré dans l'air du voisinage des composants électroniques et maintenir cette température pendant 168 h.

F.7.2 Résultats d'essai

Le disjoncteur et les protections électroniques doivent satisfaire aux prescriptions suivantes:

- aucun déclenchement du disjoncteur ne doit se produire;
- aucun fonctionnement des protections électroniques qui entraînerait le déclenchement du disjoncteur ne doit se produire.

F.7.3 Vérification des déclencheurs de surcharge

Après l'essai de F.7.1, le fonctionnement des déclencheurs de surcharge du disjoncteur doit être vérifié selon 7.2.1.2.4, point b).

+A2:2001

Tests shall be performed as follows:

- a) A current of 0,95 times the conventional non-tripping current (see table 6) is applied for a time equal to 10 times the tripping time which corresponds to 2,0 times the current setting.
- b) Immediately following the test of a), a current of 1,05 times the conventional tripping current (see table 6) is applied.
- c) A further test starting from the cold state is made at 2,0 times the current setting.

F.6.3 Test results

For each test frequency, the overload tripping characteristics shall comply with the following requirements:

- for test a) no tripping shall occur;
- for test b) tripping shall occur within the conventional time (see table 6);
- for test c) tripping shall occur within 1,1 times the maximum and 0,9 times the minimum values of the manufacturer's stated time-current characteristic.

F.7 Dry heat test

F.7.1 Test procedure

The test shall be performed on the circuit-breaker in accordance with 7.2.2 at the maximum rated current for a given frame size, on all phase poles, at an ambient temperature of 40 °C. The duration of the test, once temperature equilibrium is reached, shall be 168 h.

Tightening torques applied to the terminals shall be in accordance with the manufacturer's instructions. In the absence of such instructions, table 4 of IEC 60947-1 shall apply.

As an alternative, the test may be performed as follows:

- measure and record the highest temperature rise of the air surrounding the electronic components, during the temperature rise verification of test sequence I;
- install the electronic controls in the test chamber;
- supply the electronic controls with their input energizing value;
- adjust the temperature of the test chamber to a value of 40 K above the temperature rise recorded for the air surrounding the electronic components and maintain this temperature for 168 h.

F.7.2 Test results

The circuit-breaker and the electronic controls shall meet the following requirements:

- no tripping of the circuit-breaker shall occur;
- no operation of the electronic controls which would cause the circuit-breaker to trip shall occur.

F.7.3 Verification of overload releases

Following the test of F.7.1, the operation of the overload releases of the circuit-breaker shall be verified in accordance with 7.2.1.2.4, item b).

60947-2 © CEI:1995+A1:1997 +A2:2001

F.8 Essai de chaleur humide

F.8.1 Procédure d'essai

L'essai doit être effectué conformément à la CEI 60068-2-30.

La température la plus élevée doit être de $55 \, ^{\circ}\text{C} \pm 2 \, ^{\circ}\text{C}$ (variante 1) et le nombre de cycles doit être de six.

L'essai peut être effectué avec seulement les protections électroniques présentes dans la chambre d'essai.

F.8.2 Vérification des déclencheurs de surcharge

Après l'essai de F.8.1, le fonctionnement des déclencheurs de surcharge du disjoncteur doit être vérifié selon 7.2.1.2.4, point b).

F.9 Cycles de variation de température avec un taux de variation spécifié

F.9.1 Conditions d'essai

Chaque conception de protection électronique doit être soumise à des cycles de variation de température comme cela est défini à la figure F.25.

La montée et la descente en température pendant le taux de variation doit être de 1 K/min ± 0,2 K/min. La température, une fois atteinte, doit être maintenue pendant au moins 2 h.

Le nombre de cycles doit être de 28.

F.9.2 Procédure d'essai

L'essai doit être effectué conformément à la CEI 60068-2-14.

Pour ces essais, les protections électroniques peuvent être montées à l'intérieur du disjoncteur ou séparément.

Les protections électroniques doivent être alimentées pour simuler les conditions de service.

Lorsque les protections électroniques sont montées à l'intérieur du disjoncteur, le circuit principal ne doit pas être alimenté.

F.9.3 Résultats d'essai

Les protections électroniques doivent satisfaire à la prescription suivante.

Aucun fonctionnement des protections électroniques qui provoquerait le déclenchement du disjoncteur pendant les 28 cycles ne doit se produire.

F.9.4 Vérification des déclencheurs de surcharge

Après les essais de F.9.2, le fonctionnement des déclencheurs de surcharge du disjoncteur doit être vérifié selon 7.2.1.2.4, point b).

60947-2 © IEC:1995+A1:1997 +A2:2001

F.8 Damp heat test

F.8.1 Test procedure

The test shall be performed according to IEC 60068-2-30.

The upper temperature shall be 55 °C \pm 2 °C (variant 1) and the number of cycles shall be six.

The test may be performed with only the electronic controls in the test chamber.

F.8.2 Verification of overload releases

Following the test of F.8.1 the operation of the overload releases of the circuit-breaker shall be verified in accordance with 7.2.1.2.4, item b).

F.9 Temperature variation cycles at a specified rate of change

F.9.1 Test conditions

Each design of electronic controls shall be submitted to temperature variation cycles in accordance with figure F.25.

The rise and fall of temperature during the rate of variation shall be 1 K/min \pm 0,2 K/min. The temperature, once reached, shall be maintained for at least 2 h.

The number of cycles shall be 28.

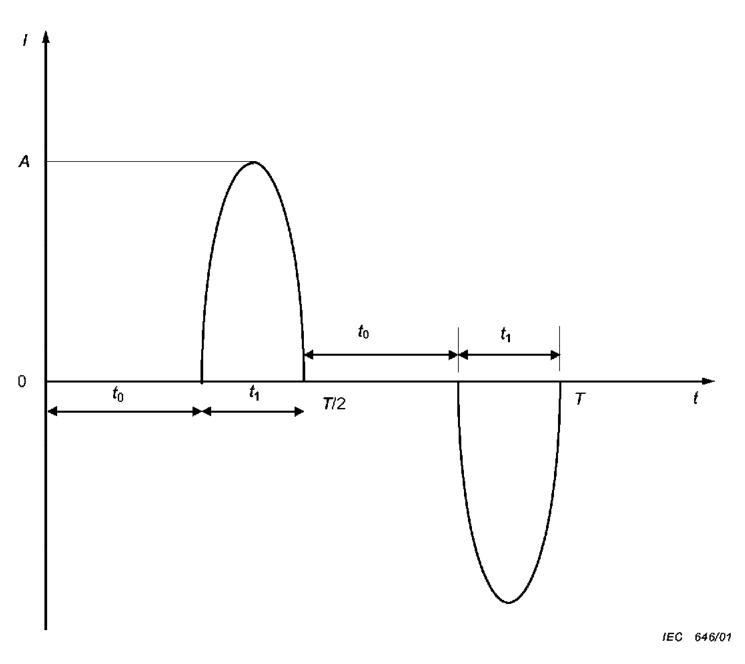
F.9.2 Test procedure

The test shall be carried out according to IEC 60068-2-14.

For these tests, the electronic controls may be mounted inside the circuit-breaker or separately.

The electronic controls shall be energized to simulate service conditions.

Where the electronic controls are mounted inside the circuit-breaker, the main circuit shall not be energized.


F.9.3 Test results

The electronic controls shall meet the following requirement.

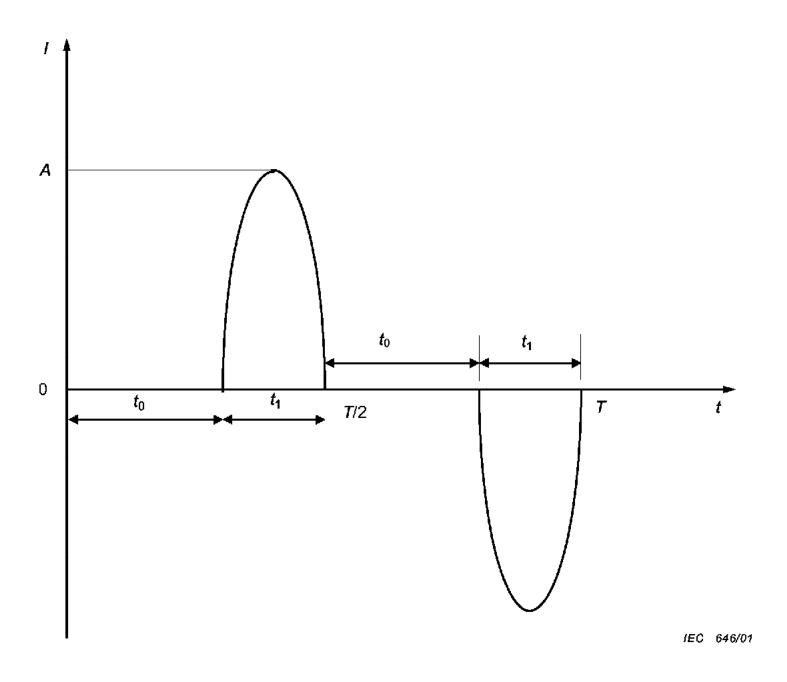
No operation of the electronic controls which would cause the circuit-breaker to trip during the 28 cycles shall occur.

F.9.4 Verification of overload releases

Following the test of F.9.2, the operation of the overload releases of the circuit-breaker shall be verified in accordance with 7.2.1.2.4, item b).

Légende

A courant de crête


T période

 t_{1} temps de conduction pendant chaque demi-cycle

 t_0 retard

Facteur de crête =
$$\frac{A}{\sqrt{\frac{2}{T} \int_{0}^{T/2} i^{2}(t) dt}}$$

Figure F.1 – Représentation du courant d'essai produit par des thyristors tête-bêche selon F.4.1

Key

A peak current

T period

 t_1 conducting time during each half-cycle

t₀ delay time

Peak factor =
$$\frac{A}{\sqrt{\frac{2}{T} \int_{0}^{T/2} i^{2}(t) dt}}$$

Figure F.1 – Representation of test current produced by back-to-back thyristors in accordance with F.4.1

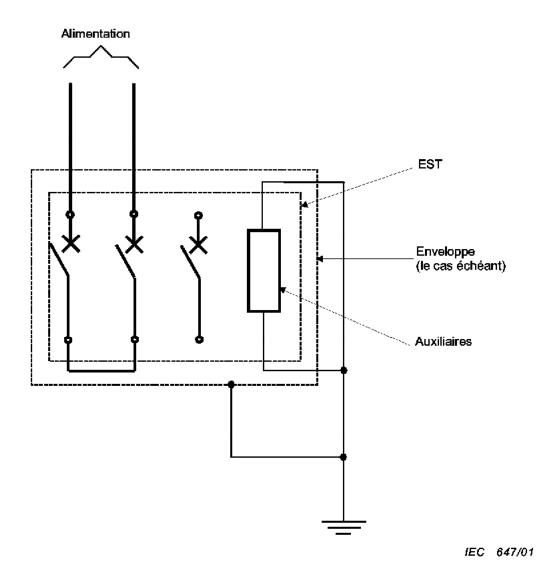


Figure F.2 – Circuit d'essai pour les essais d'émission, d'immunité aux harmoniques, aux creux de courant, aux décharges électrostatiques et aux champs électromagnétiques rayonnés selon F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 et F.6.2 – Configuration deux pôles de phase en série

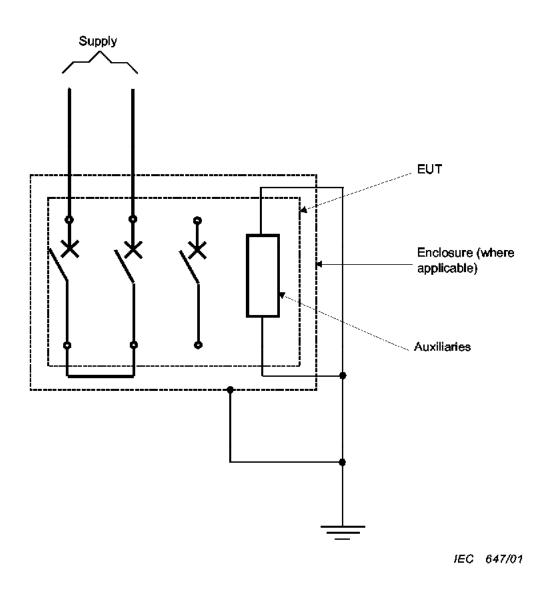


Figure F.2 – Test circuit for emission tests, immunity to harmonics, current dips, electrostatic discharges and radiated electromagnetic fields in accordance with F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 and F.6.2 – Two-phase poles in series configuration

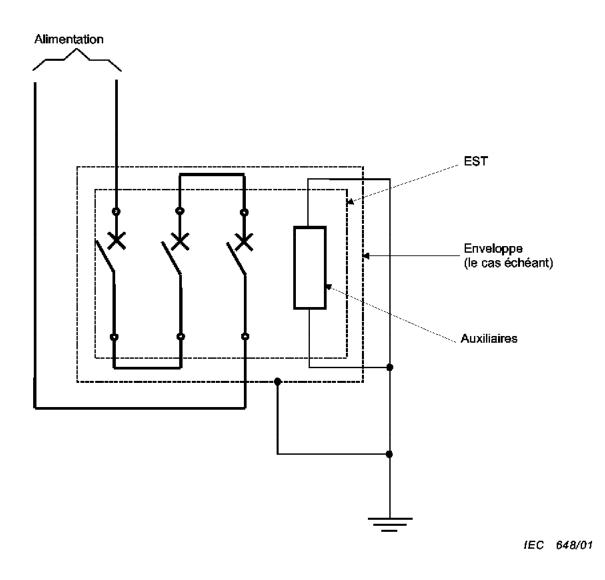
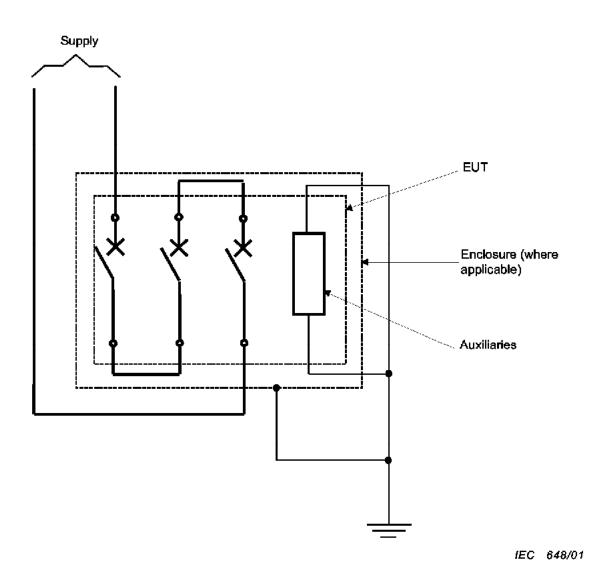
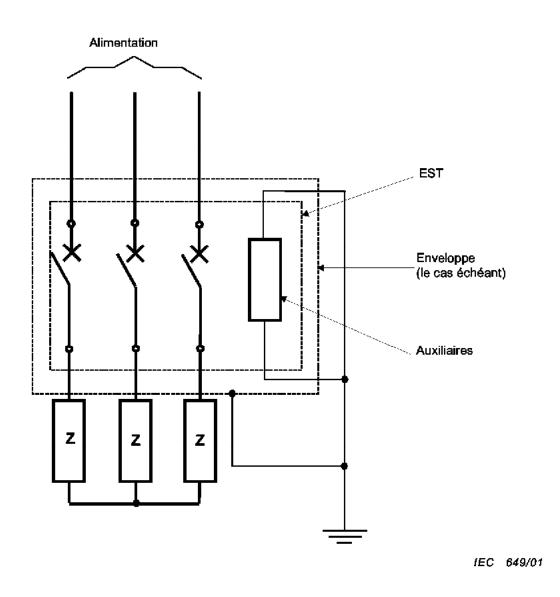
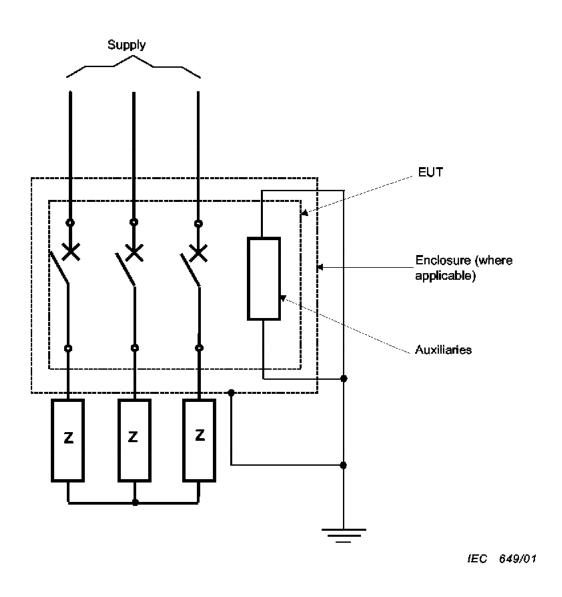


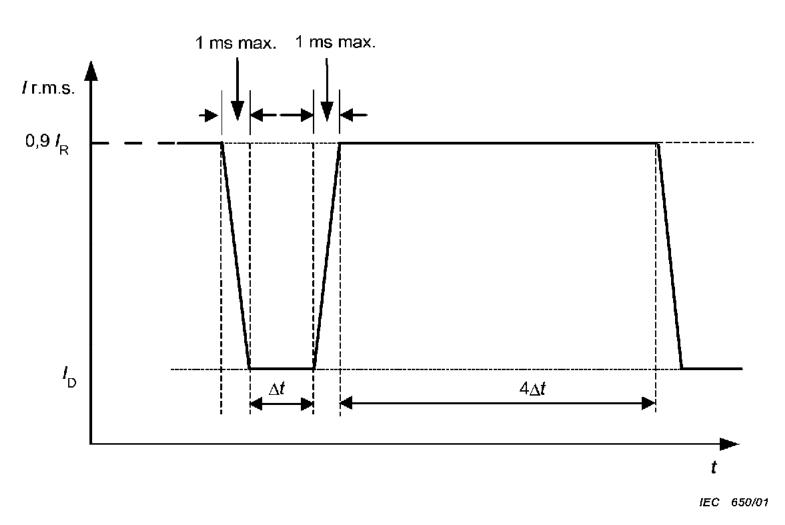
Figure F.3 – Circuit d'essai pour les essais d'émission, d'immunité aux harmoniques, aux creux de courant, aux décharges électrostatiques et aux champs électromagnétiques rayonnés selon F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 et F.6.2 – Configuration trois pôles de phase en série


Figure F.3 – Test circuit for emission tests, immunity to harmonics, current dips, electrostatic discharges and radiated electromagnetic fields in accordance with F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 and F.6.2 – Three-phase poles in series configuration

Composants

Z impédance de réglage du courant (si demandé)

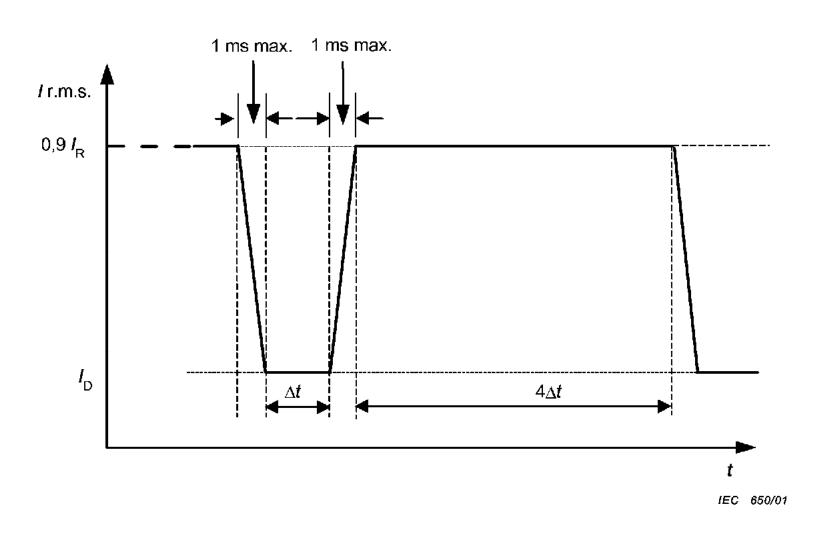

Figure F.4 – Circuit d'essai pour les essais d'émission, d'immunité aux harmoniques, aux creux de courant, aux décharges électrostatiques et aux champs électromagnétiques rayonnés selon F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 et F.6.2 – Configuration trois phases

Components

Z impedance for adjusting the current (where required)

Figure F.4 – Test circuit for emission tests, immunity to harmonics, current dips, electrostatic discharges and radiated electromagnetic fields in accordance with F.4.1.3, F.4.2.1, F.4.3.1, F.4.4.1, F.5.4.1 and F.6.2 – Three-phase configuration

Légende


IR courant de réglage

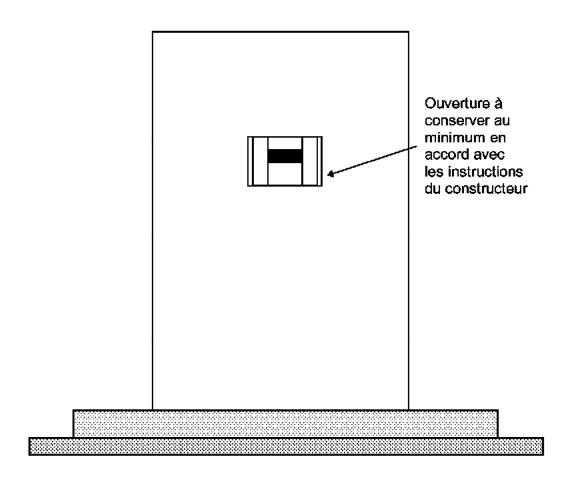
 I_{D} courant d'essai de creux

 Δt temps de creux

 $4\Delta t$ temps de palier

Figure F.5 – Courant d'essai pour la vérification de l'influence des creux et des interruptions de courant selon F.4.2.1

Key


I_R setting current

ID dip test current

 Δt dip time

4∆t dwell time

Figure F.5 – Test current for the verification of the influence of the current dips and interruptions in accordance with F.4.2.1

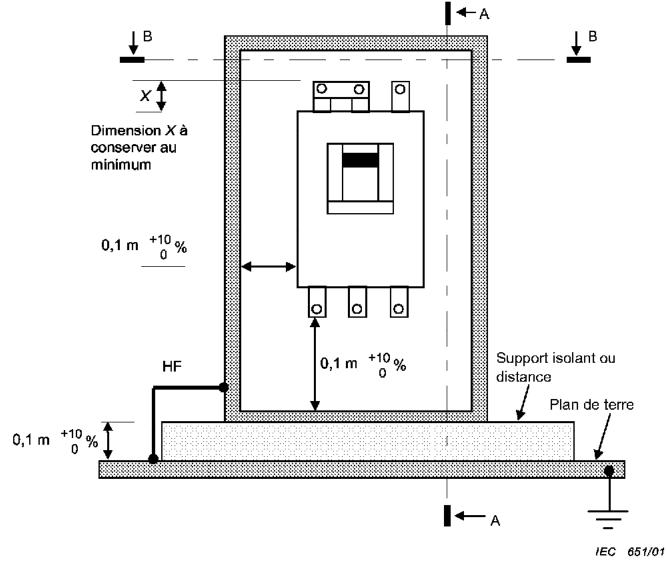
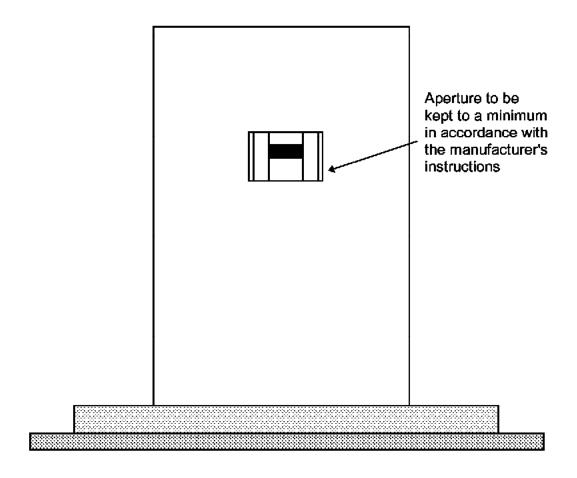



Figure F.6a – Elévation

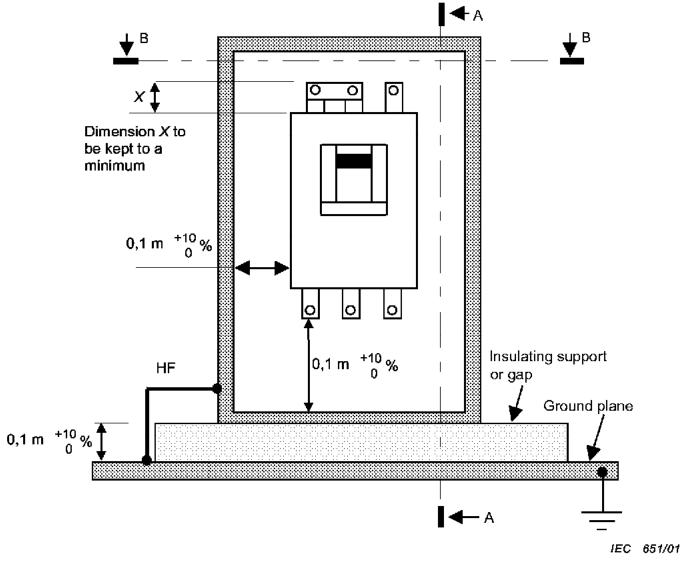
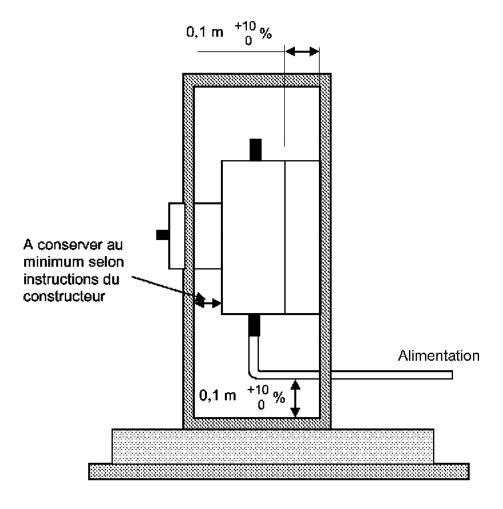
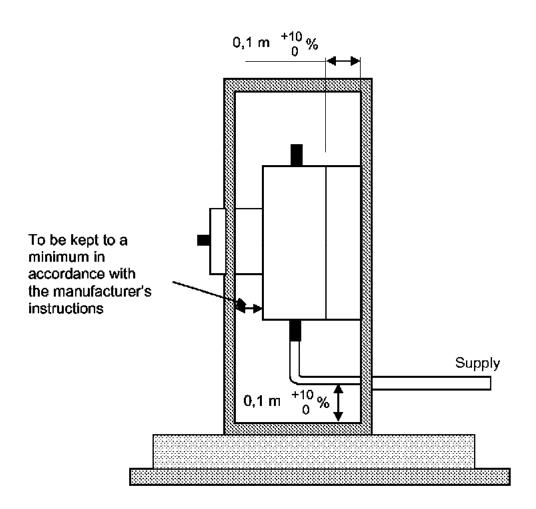




Figure F.6a – Elevation


Section A-A

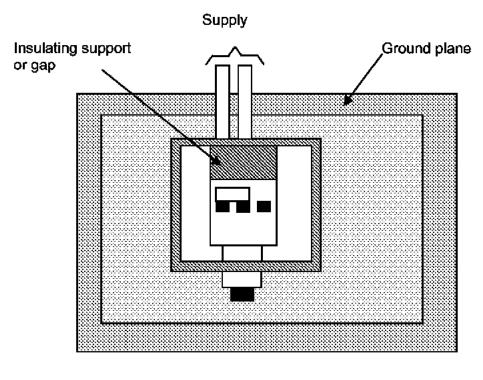
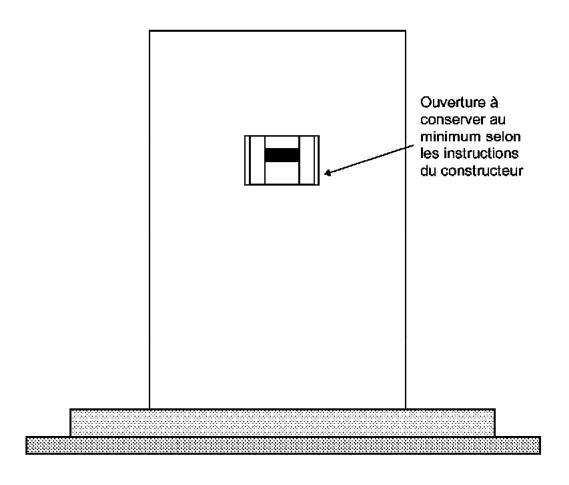

IEC 652/01

Figure F.6b - Sections A-A et B-B

Figure F.6 – EST monté dans une enveloppe métallique – Configuration deux pôles de phase en série selon F.4.3.1, F.4.5.1 et F.4.6.1

Section A-A



Section B-B

IEC 652/01

Figure F.6b – Sections A-A and B-B

Figure F.6 – EUT mounted in metallic enclosure – Two-phase poles in series configuration in accordance with F.4.3.1, F.4.5.1 and F.4.6.1

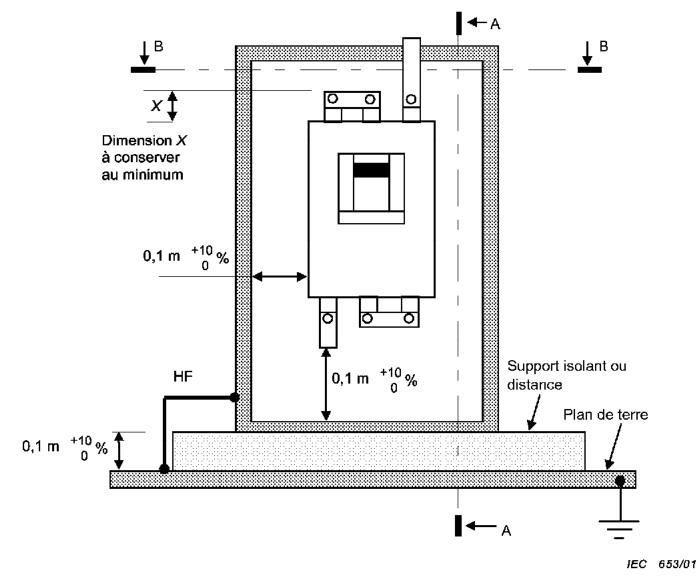
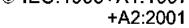
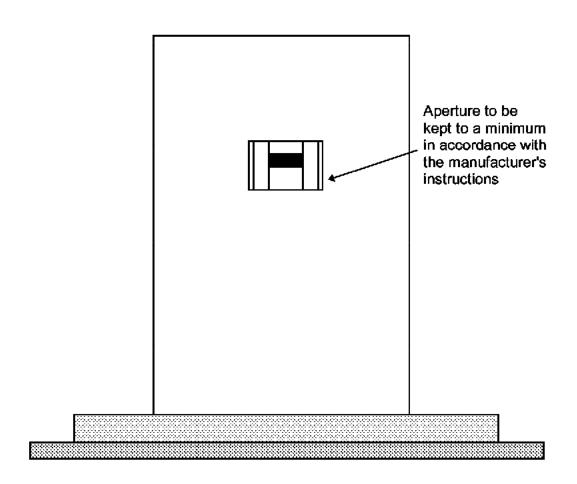




Figure F.7a – Elévation

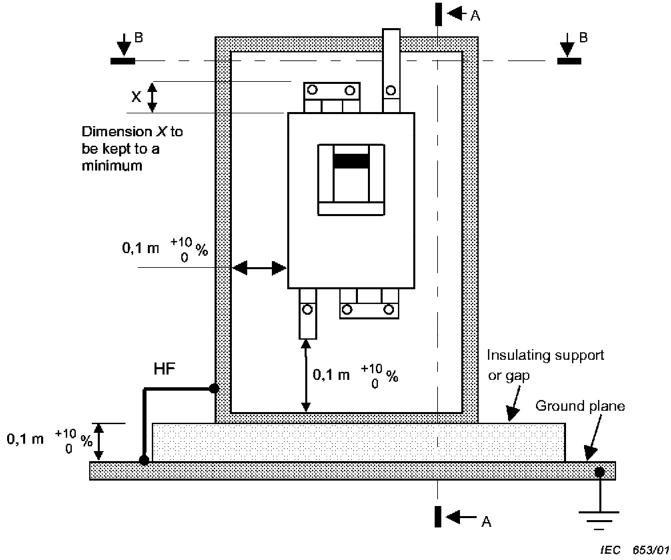
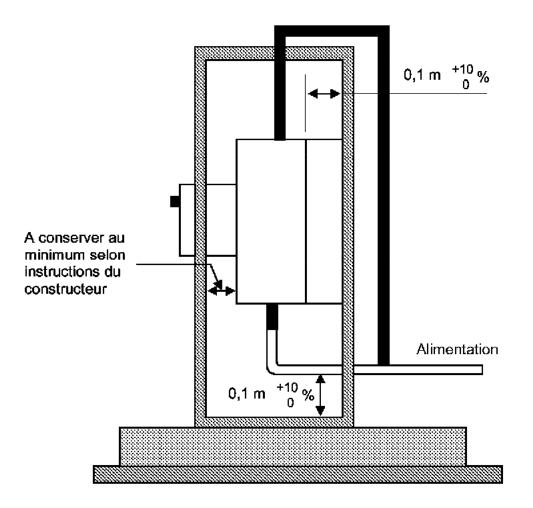
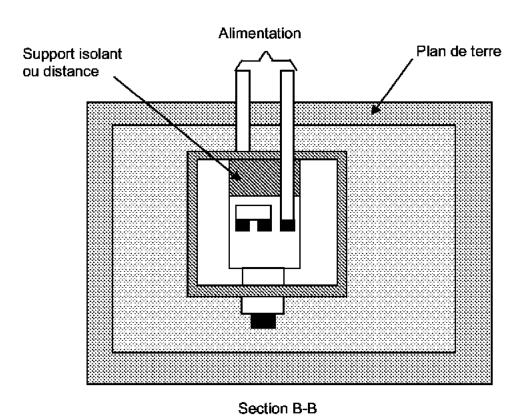
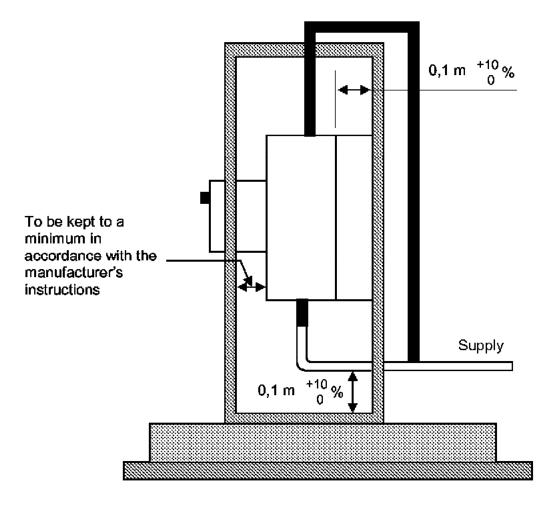




Figure F.7a – Elevation


Section A-A

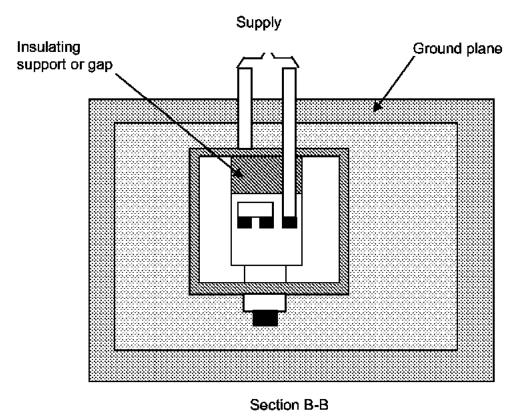
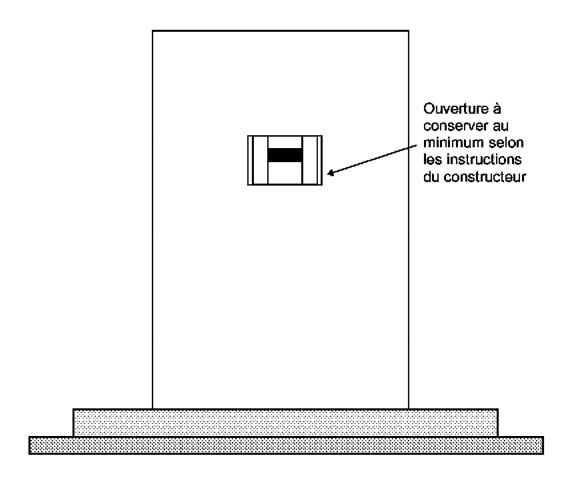

IEC 654/01

Figure F.7b - Sections A-A et B-B

Figure F.7 – EST monté dans une enveloppe métallique – Configuration trois pôles de phase en série selon F.4.3.1, F.4.5.1 et F.4.6.1


Section A-A

IEC 654/01

Figure F.7b - Sections A-A and B-B

Figure F.7 – EUT mounted in metallic enclosure – Three-phase poles in series configuration in accordance with F.4.3.1, F.4.5.1 and F.4.6.1

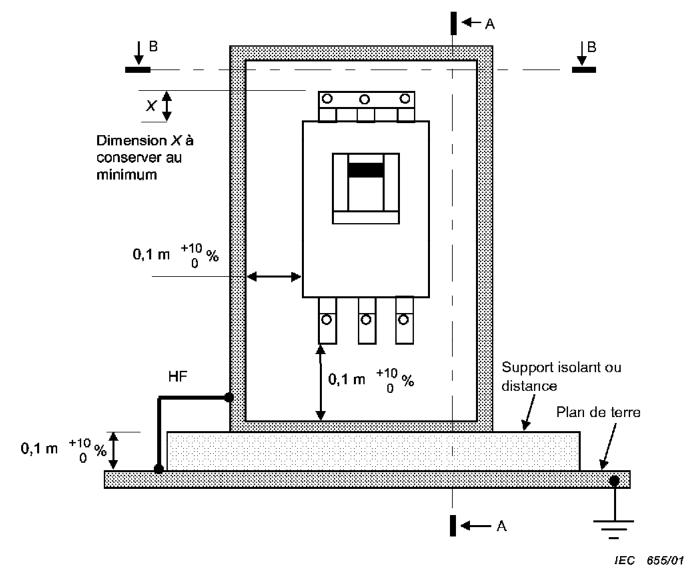
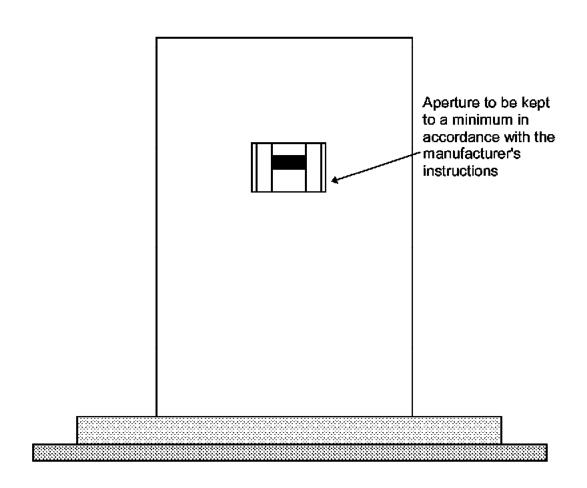



Figure F.8a – Elévation

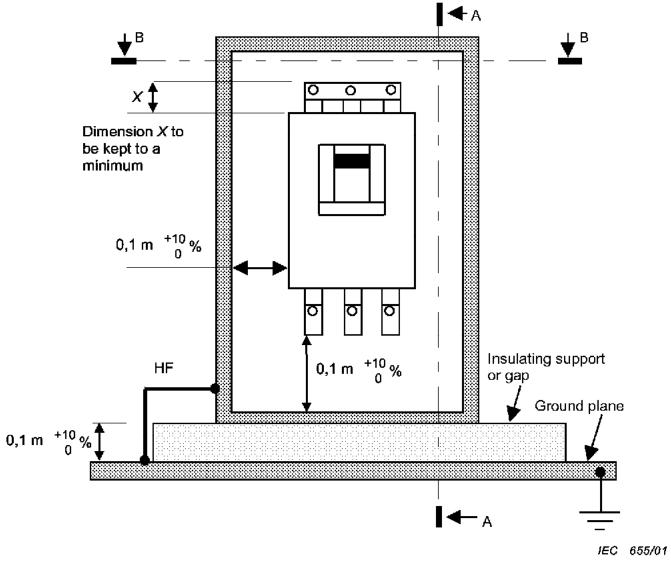
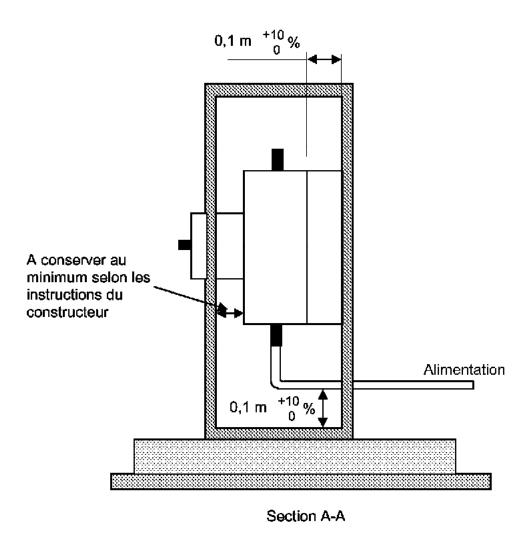
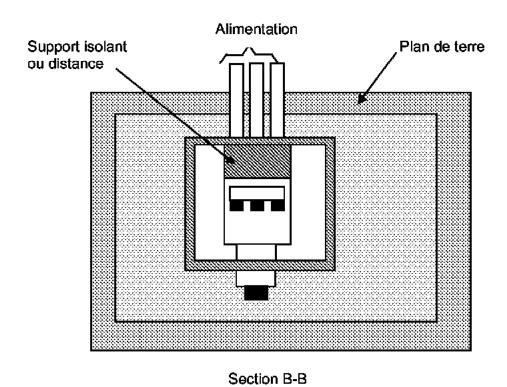
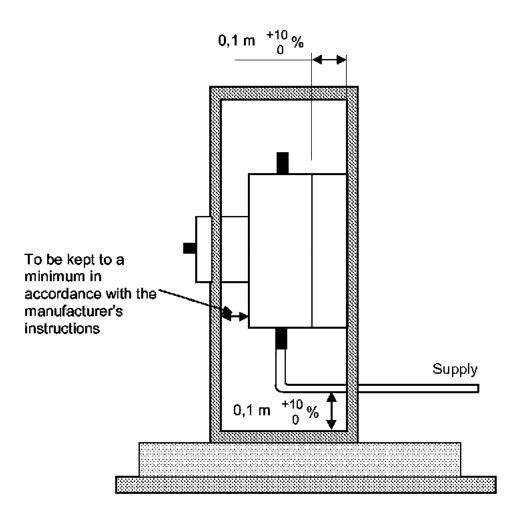




Figure F.8a – Elevation



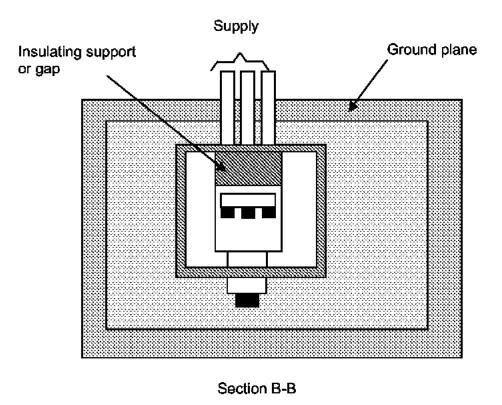
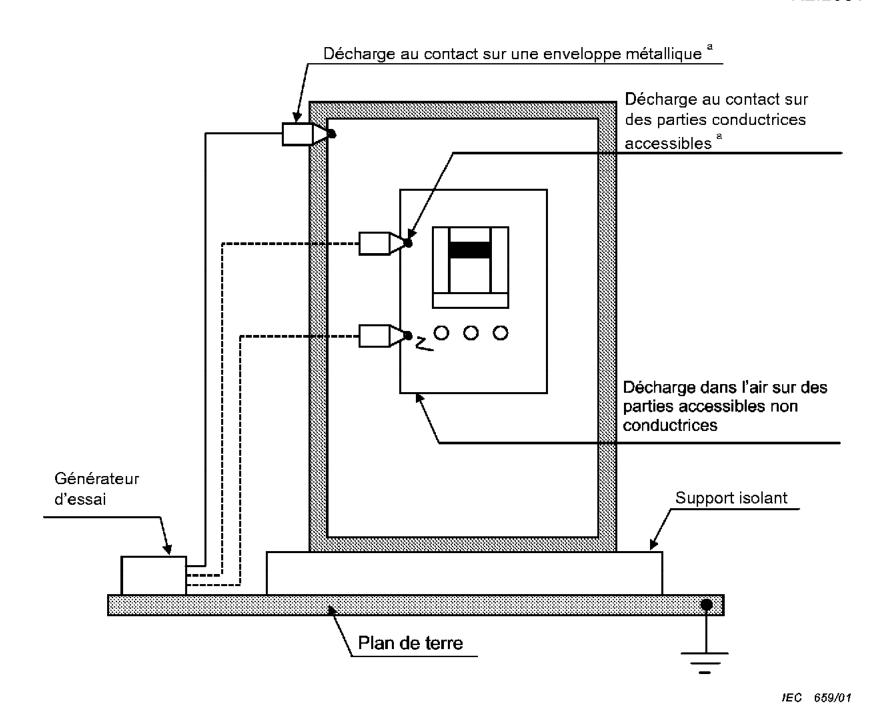

IEC 656/01

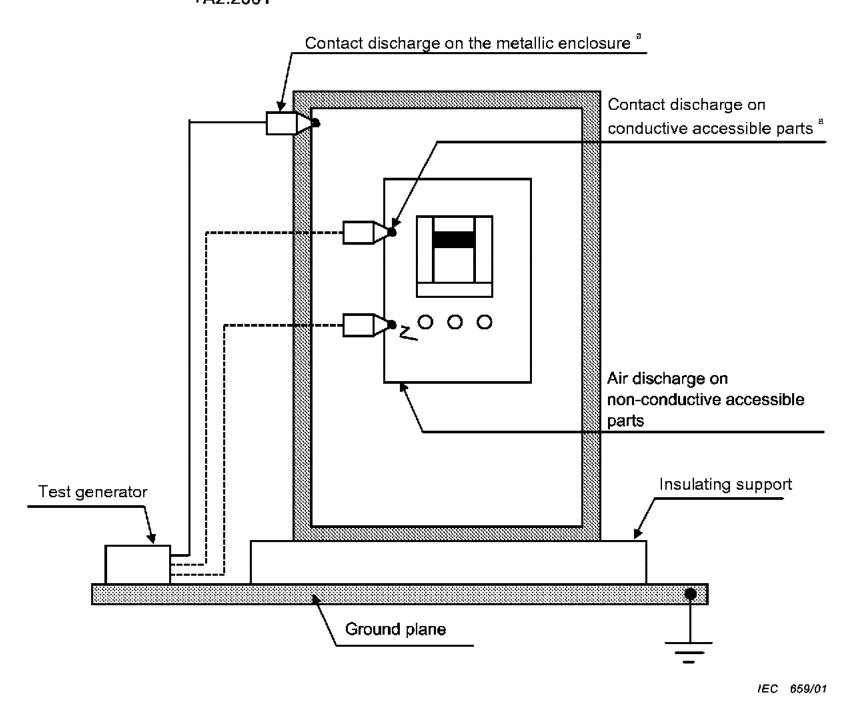
Figure F.8b - Sections A-A et B-B

Figure F.8 – EST monté dans une enveloppe métallique – Configuration trois phases selon F.4.3.1, F.4.5.1 et F.4.6.1


Section A-A

IEC 656/01

Figure F.8b - Sections A-A and B-B


Figure F.8 – EUT mounted in metallic enclosure – Three-phase configuration in accordance with F.4.3.1, F.4.5.1 and F.4.6.1

a L'électrode de décharge au contact doit être appliquée perpendiculairement à la surface à essayer.

Figure F.9 – Installation d'essai pour la vérification de l'immunité aux décharges électrostatiques selon F.4.3.2

+A2:2001

– 281 –

^a Contact discharge probe shall be applied perpendicular to the surface under test.

Figure F.9 – Test set-up for the verification of immunity to electrostatic discharges in accordance with F.4.3.2

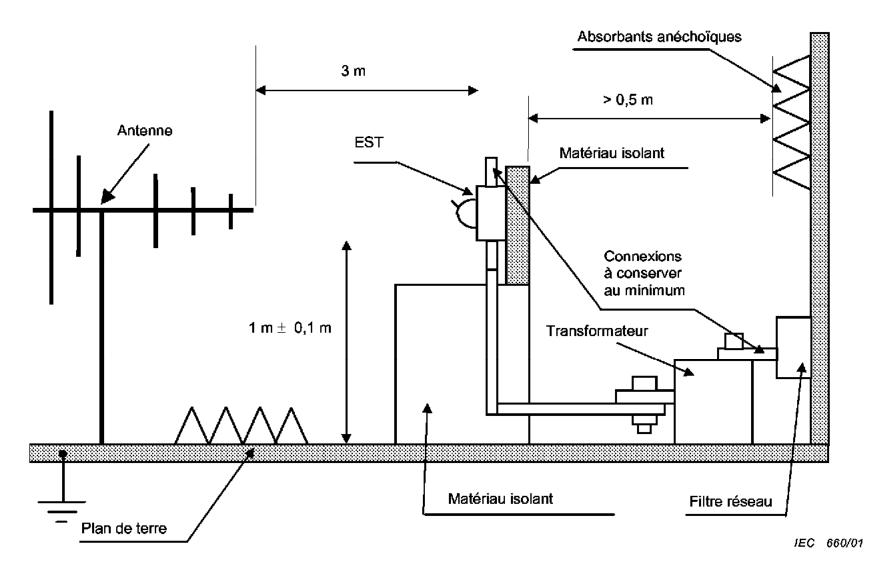


Figure F.10 – Installation d'essai pour l'immunité aux champs électromagnétiques rayonnés selon F.4.4.1

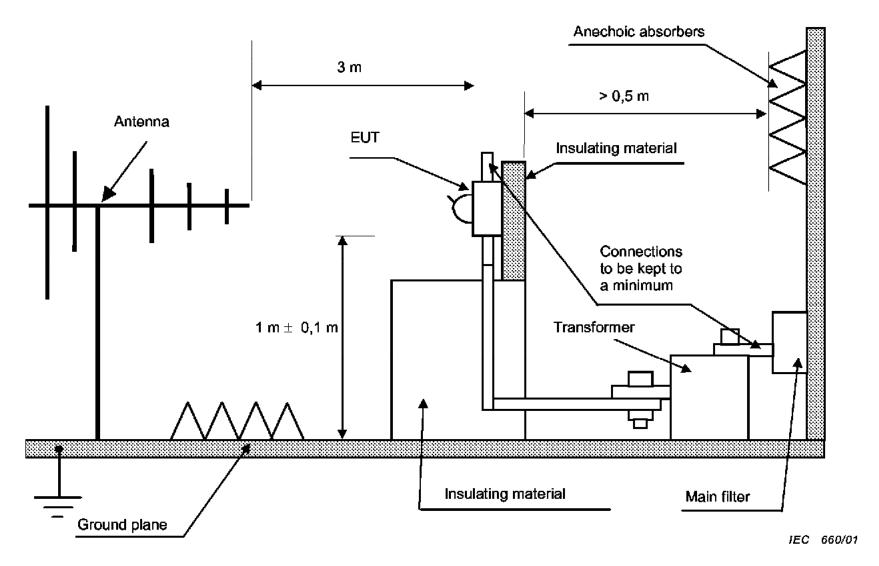


Figure F.10 – Test set-up for immunity to radiated electromagnetic fields in accordance with F.4.4.1

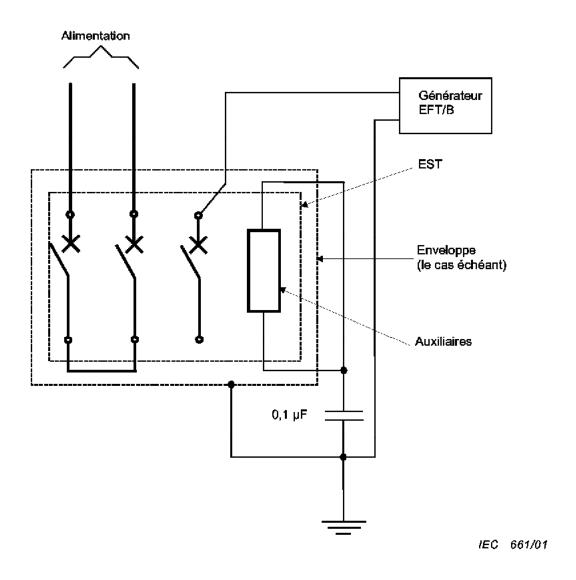


Figure F.11 – Circuit pour les essais d'immunité aux transitoires électriques rapides (EFT/B) selon F.4.5.1 et F.4.5.2 – Configuration deux pôles de phase en série

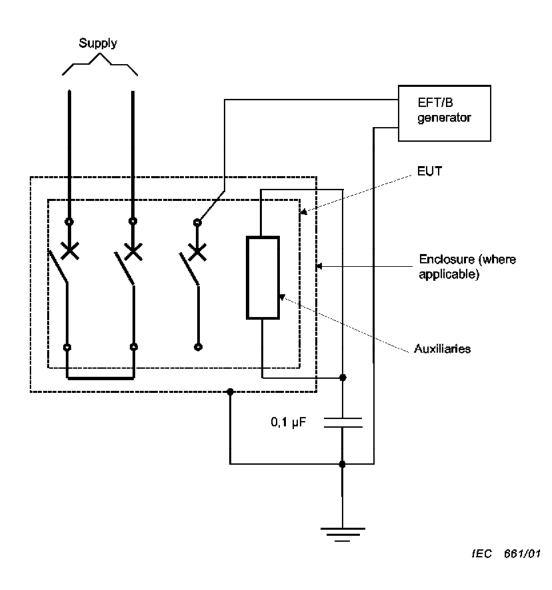


Figure F.11 – Circuit for electrical fast transient/burst (EFT/B) immunity test in accordance with F.4.5.1 and F.4.5.2 – Two-phase poles in series configuration

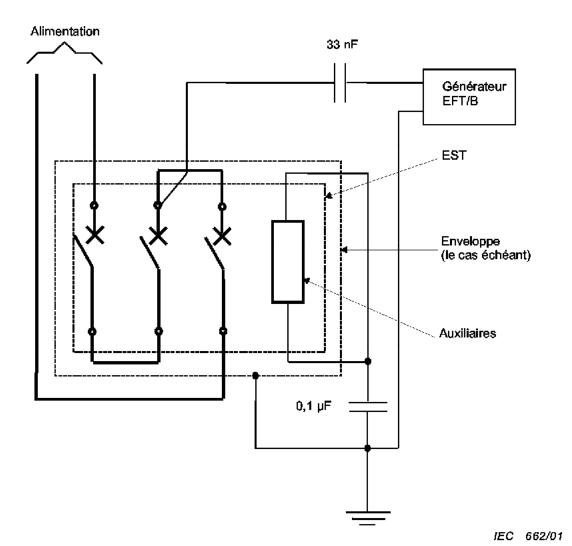
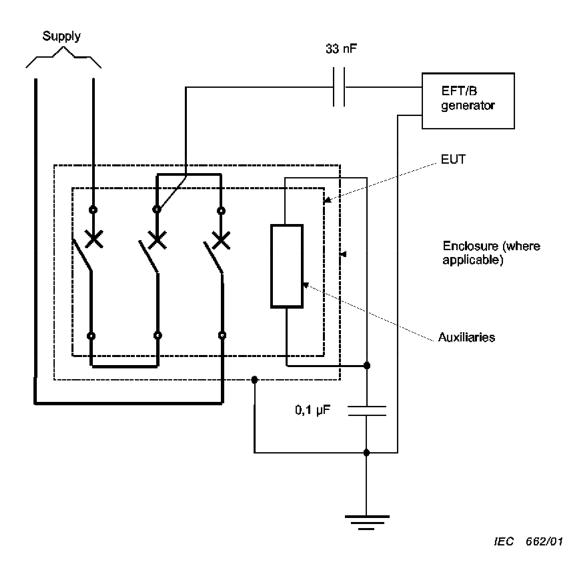
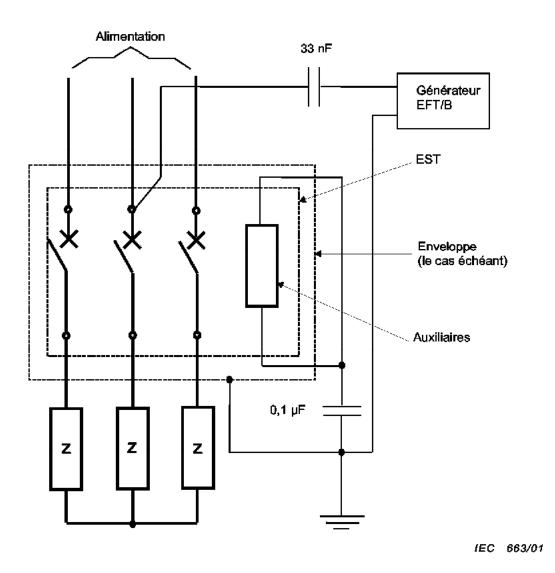
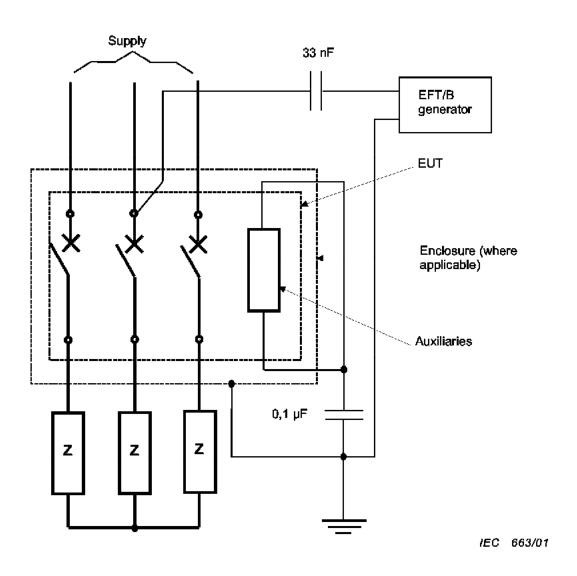


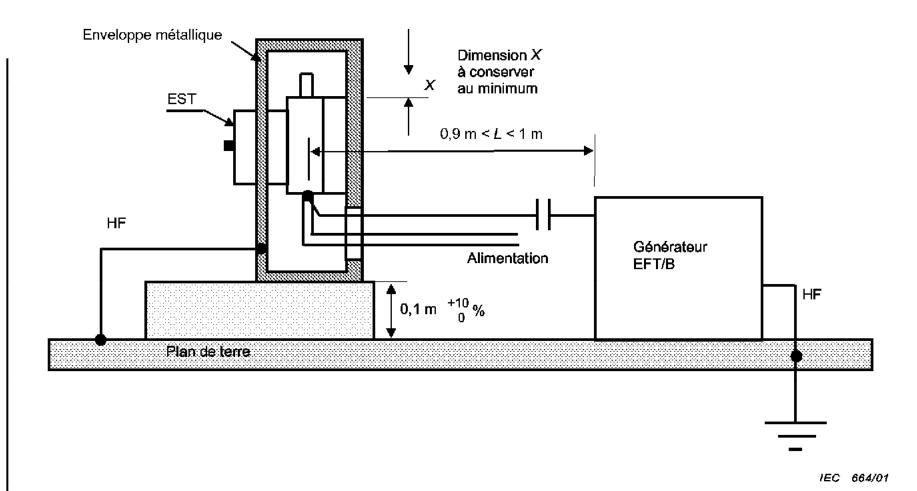
Figure F.12 – Circuit pour l'essai d'immunité aux transitoires électriques rapides (EFT/B) selon F.4.5.1 et F.4.5.2 – Configuration trois pôles de phase en série


Figure F.12 – Circuit for electrical fast transient/burst (EFT/B) immunity test in accordance with F.4.5.1 and F.4.5.2 – Three-phase poles in series configuration

Composants

Z impédance pour ajuster le courant (si nécessaire)


Figure F.13 – Circuit pour l'essai d'immunité aux transitoires électriques rapides (EFT/B) selon F.4.5.1 et F.4.5.2 – Configuration trois phases

Components

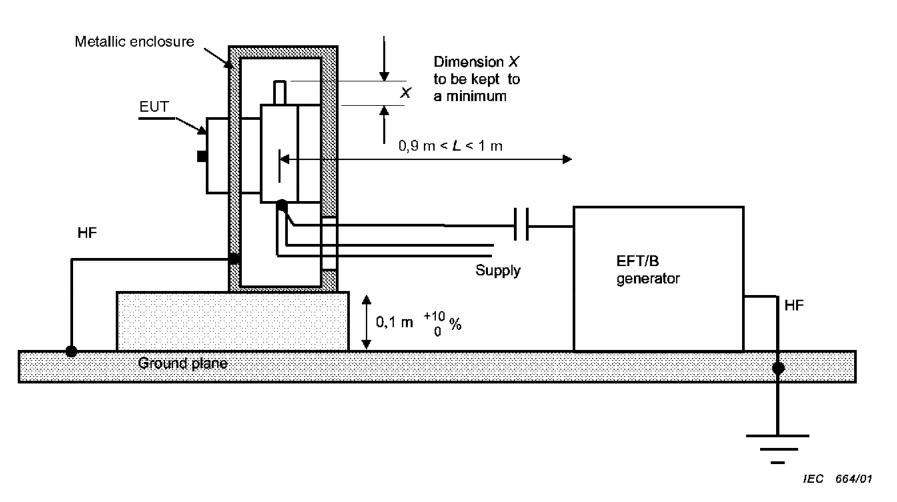

Z impedance for adjusting the current (where required)

Figure F.13 – Circuit for electrical fast transient/burst (EFT/B) immunity test in accordance with F.4.5.1 and F.4.5.2 – Three-phase configuration

NOTE Cela est un exemple représentatif; d'autres installations d'essai peuvent être utilisées dans la mesure où les spécifications d'essai sont respectées.

Figure F.14 – Installation d'essai pour l'essai d'immunité aux transitoires électriques rapides (EFT/B) selon F.4.5.2

NOTE This is a representative example; other test set-ups may be used providing the requirements for the tests are complied with.

Figure F.14 – Test set-up for electrical fast transient/burst (EFT/B) immunity test in accordance with F.4.5.2

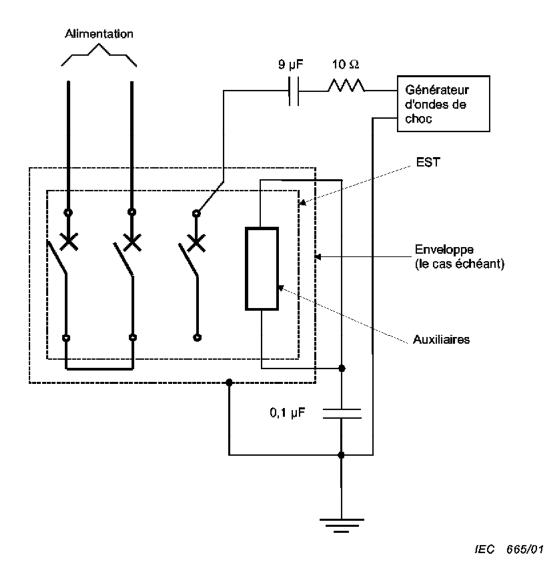


Figure F.15 – Circuit d'essai pour la vérification de l'influence des ondes de choc sur le circuit principal (phase-terre) selon F.4.6.1 et F.4.6.2 – Configuration deux pôles de phase

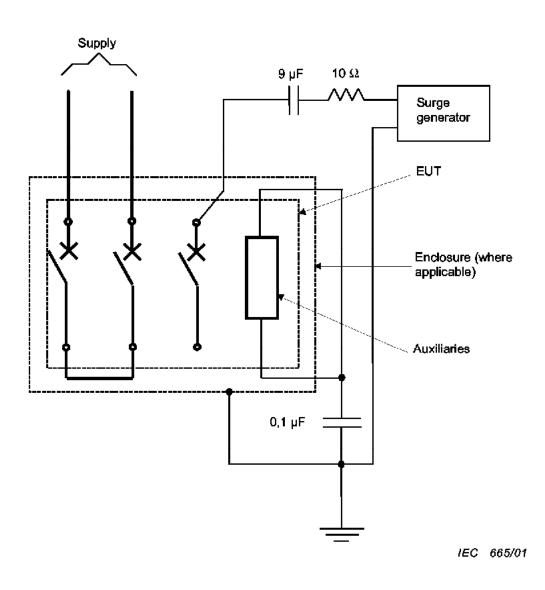


Figure F.15 – Test circuit for the verification of the influence of surges in the main circuit (line-to-earth) in accordance with F.4.6.1 and F.4.6.2 – Two-phase poles configuration

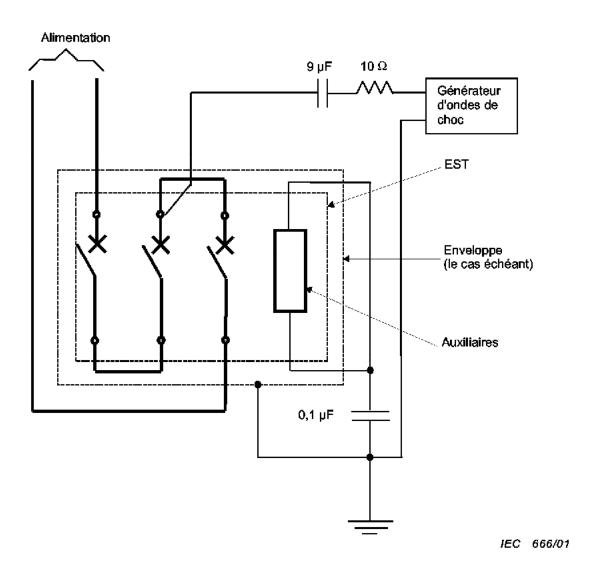
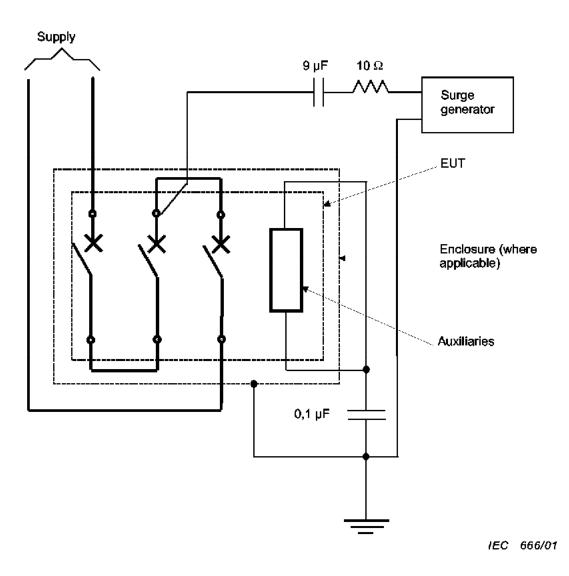
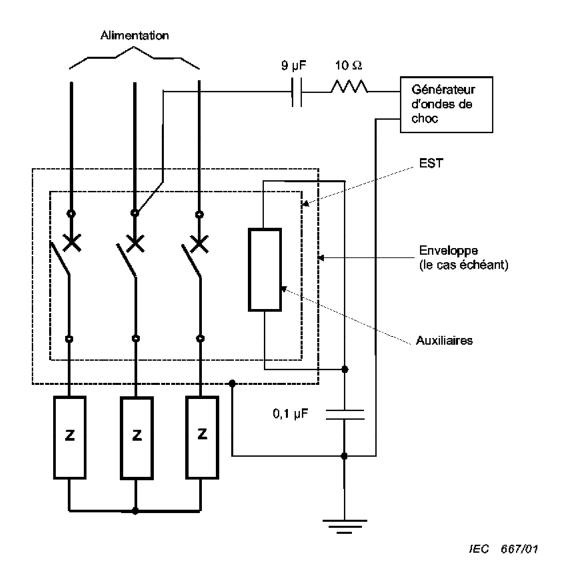
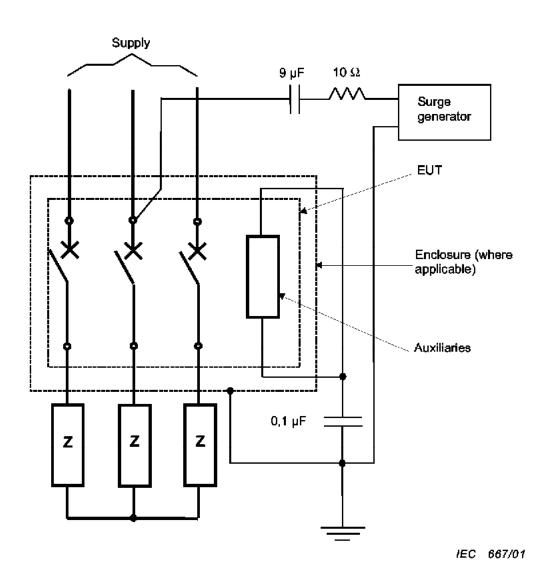


Figure F.16 – Circuit d'essai pour la vérification de l'influence des ondes de choc sur le circuit principal (phase-terre) selon F.4.6.1 et F.4.6.2 – Configuration trois pôles de phase en série


Figure F.16 – Test circuit for the verification of the influence of surges in the main circuit (line-to-earth) in accordance with F.4.6.1 and F.4.6.2 – Three-phase poles in series configuration

Composants

Z impédance pour ajuster le courant (si nécessaire)

Figure F.17 – Circuit d'essai pour la vérification de l'influence des ondes de choc sur le circuit principal (phase-terre) selon F.4.6.1 et F.4.6.2 – Configuration trois phases

Components

Z impedance for adjusting the current (where required)

Figure F.17 – Test circuit for the verification of the influence of surges in the main circuit (line-to-earth) in accordance with F.4.6.1 and F.4.6.2 – Three-phase configuration

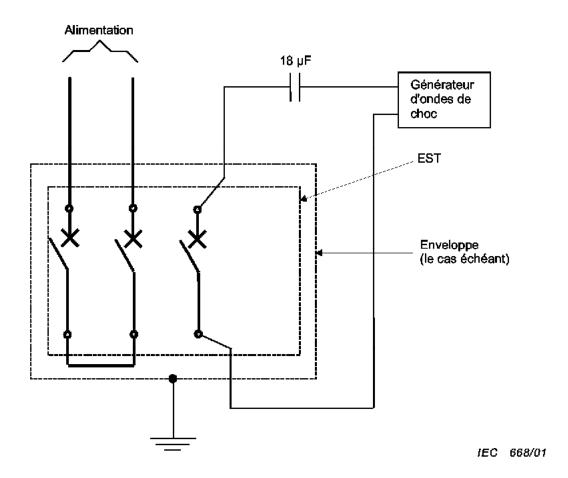


Figure F.18 – Circuit d'essai pour la vérification de l'influence des ondes de choc de courant sur le circuit principal selon F.4.6.1 et F.4.6.2 – Configuration deux pôles de phase

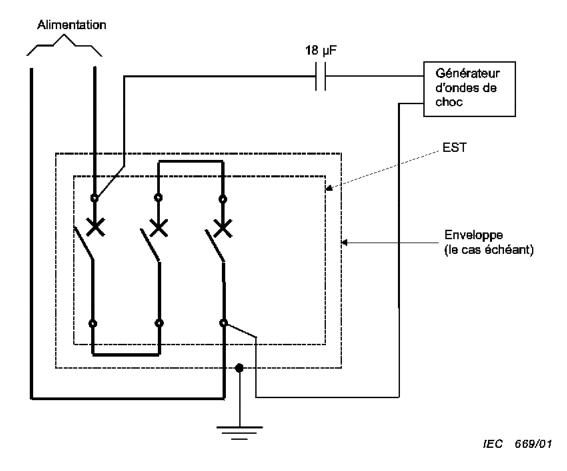


Figure F.19 – Circuit d'essai pour la vérification de l'influence des ondes de choc de courant sur le circuit principal selon F.4.6.1 et F.4.6.2 – Configuration trois pôles de phase en série

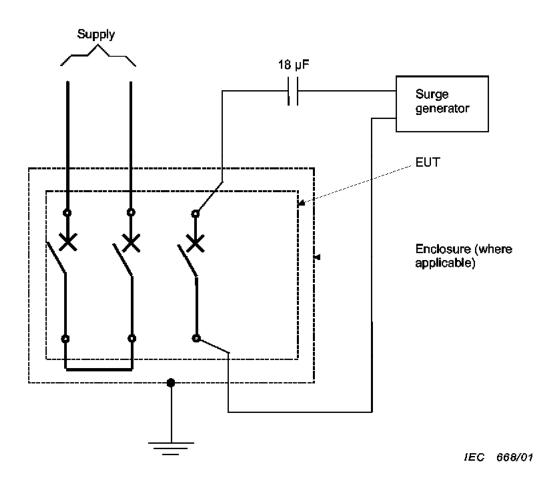
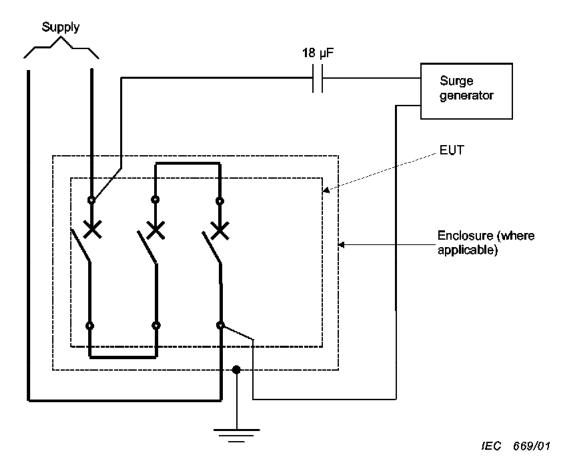
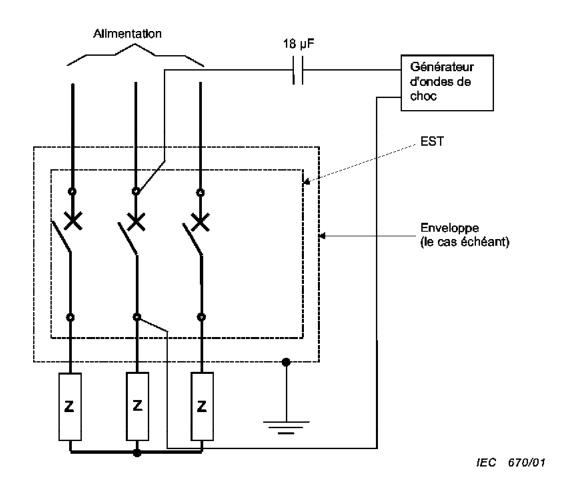
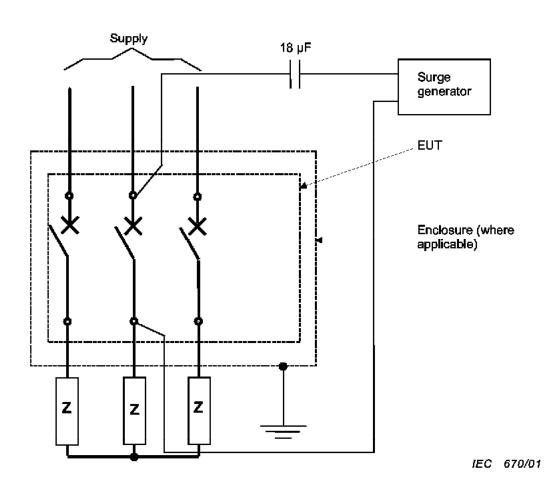


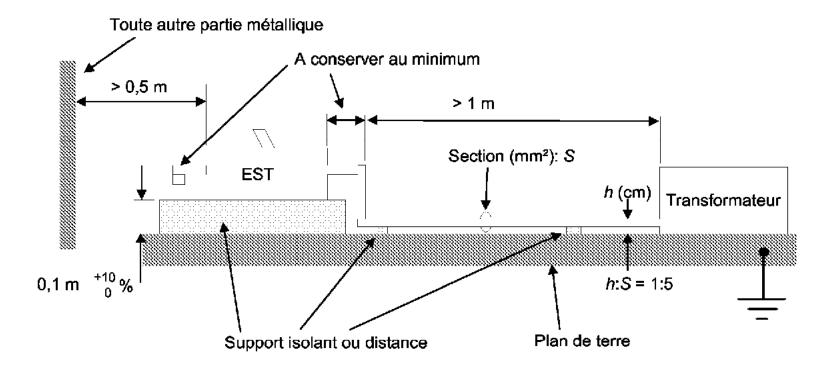
Figure F.18 – Test circuit for the verification of the influence of current surges in the main circuit in accordance with F.4.6.1 and F.4.6.2 – Two-phase poles configuration

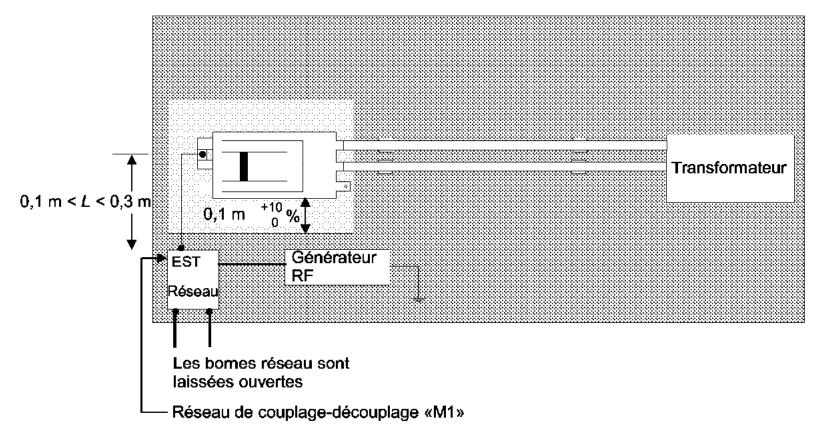




Figure F.19 – Test circuit for the verification of the influence of current surges in the main circuit in accordance with F.4.6.1 and F.4.6.2 – Three-phase poles in series configuration

Composants

Z impédance pour ajuster le courant (si nécessaire)

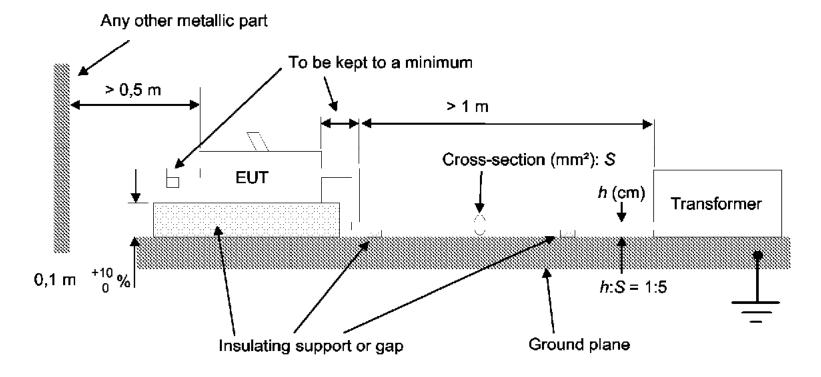

Figure F.20 – Circuit d'essai pour la vérification de l'influence des ondes de choc de courant sur le circuit principal selon F.4.6.1 et F.4.6.2 – Configuration trois phases

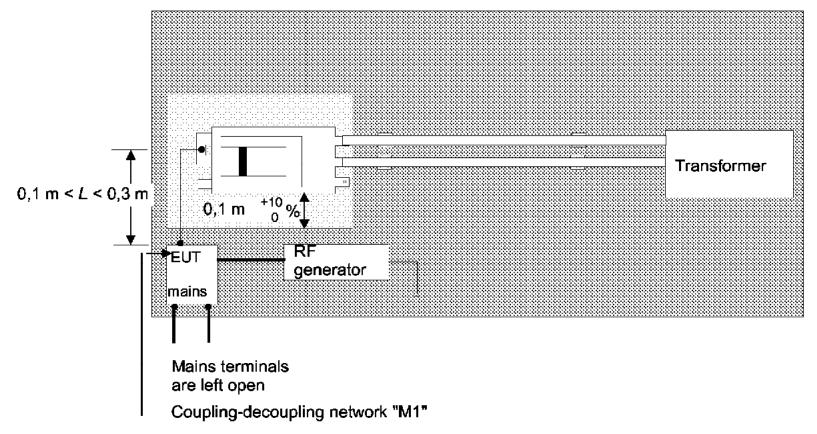


Components

Z impedance for adjusting the current (where required)

Figure F.20 – Test circuit for the verification of the influence of current surges in the main circuit in accordance with F.4.6.1 and F.4.6.2 – Three-phase configuration

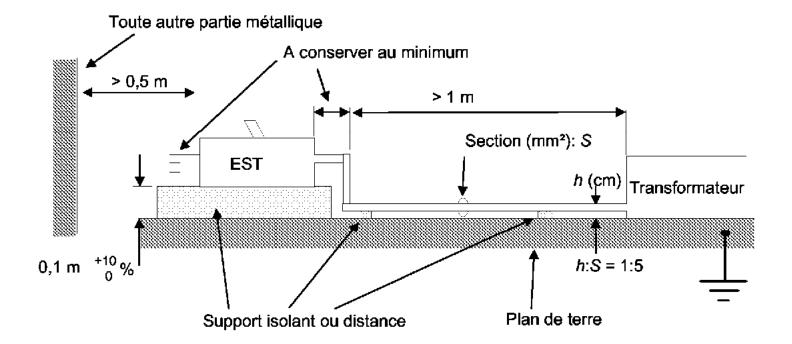

IEC 671/01

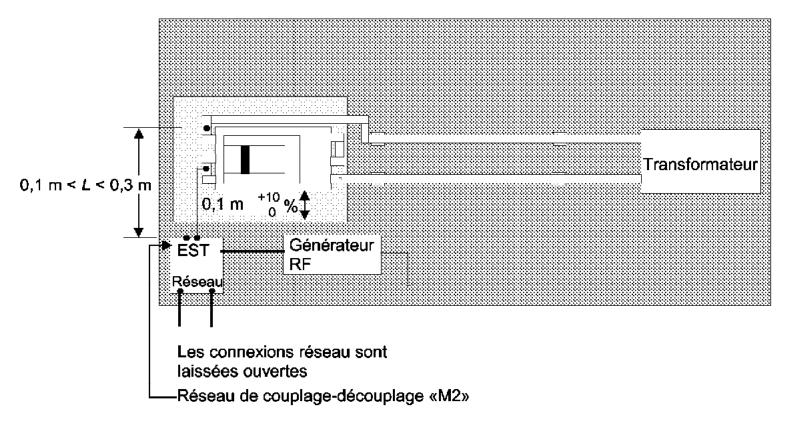

Légende

L longueur totale de câble

NOTE Comme variante au réseau de couplage-découplage M1, M2 ou M3 peuvent être utilisés, auquel cas les deux ou trois conducteurs, selon ce qui est applicable, sont raccordés au même point de l'EST.

Figure F.21 – Installation d'essai pour les perturbations conduites, induites par les champs radioélectriques (mode commun) selon F.4.7.1 – Configuration deux pôles de phase en série

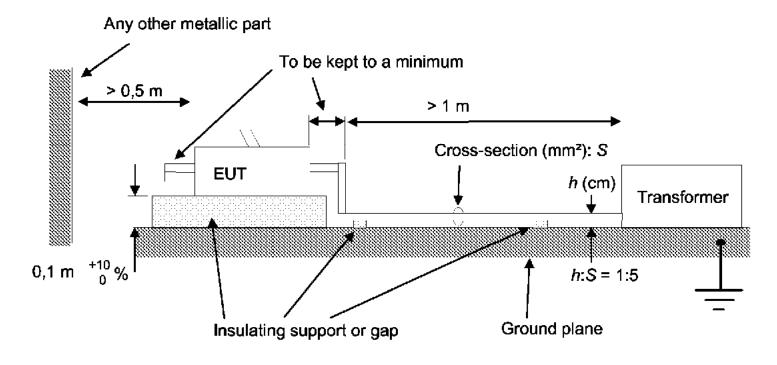


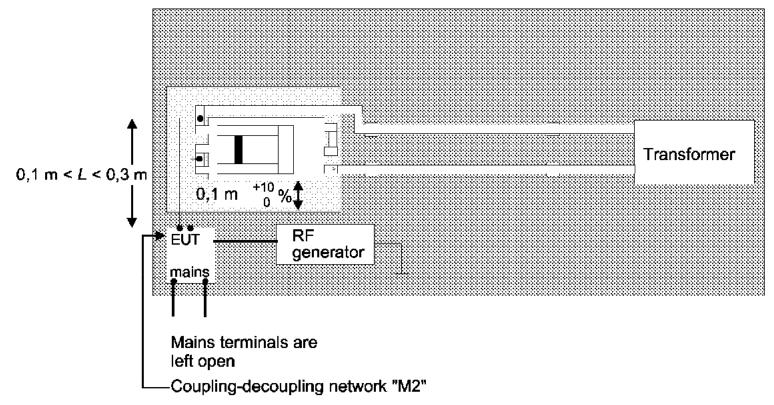

Key 1EC 671/01

L total cable length

NOTE As an alternative to the coupling-decoupling network M1, M2 or M3 may be used in which case the two or three connecting wires, as applicable, are connected to the same point of the EUT.

Figure F.21 – Test set-up for conducted disturbances induced by radio-frequency fields (common mode) in accordance with F.4.7.1 – Two-phase poles in series configuration

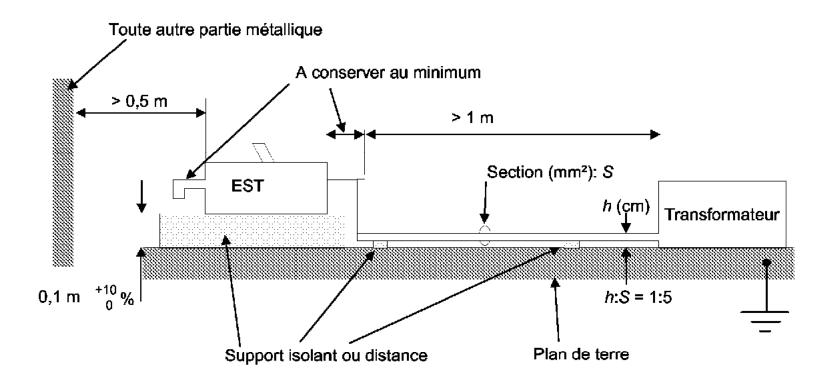


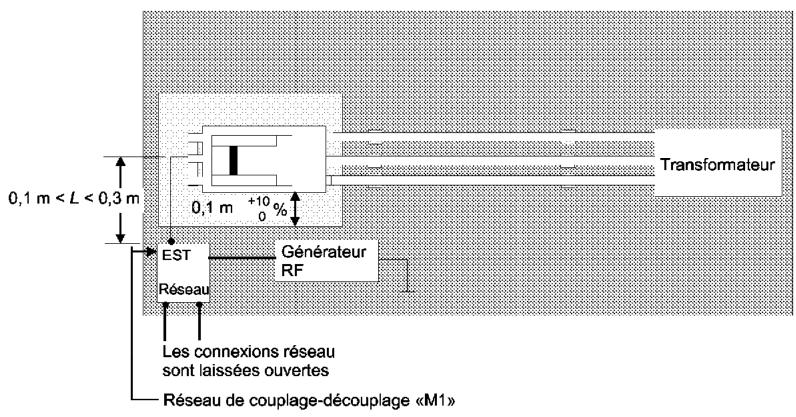

IEC 672/01

Légende

L longueur totale de câble

Figure F.22 – Installation d'essai pour les perturbations conduites, induites par les champs radioélectriques (mode commun) selon F.4.7.1 – Configuration trois pôles de phase en série

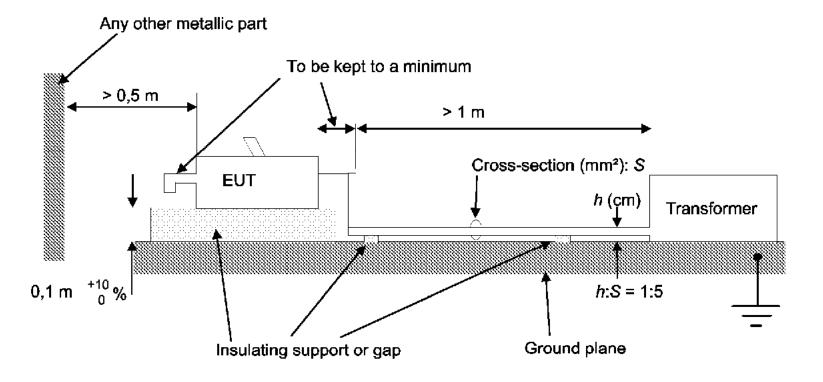


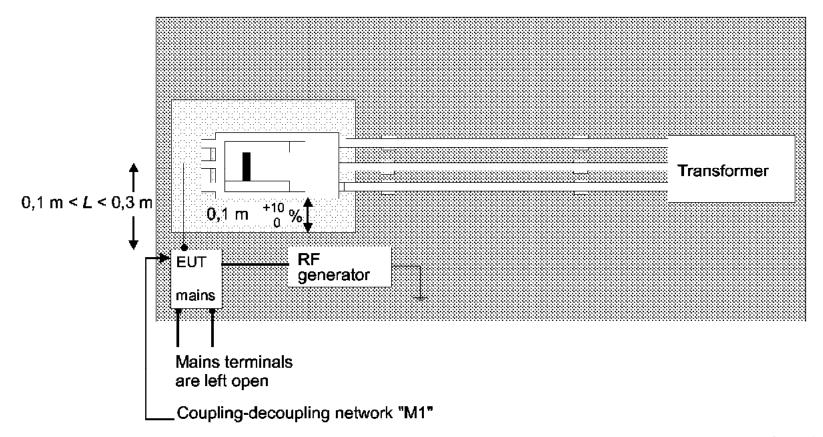

IEC 672/01

Key

L total cable length

Figure F.22 – Test set-up for conducted disturbances induced by radio-frequency fields (common mode) in accordance with F.4.7.1 – Three-phase poles in series configuration

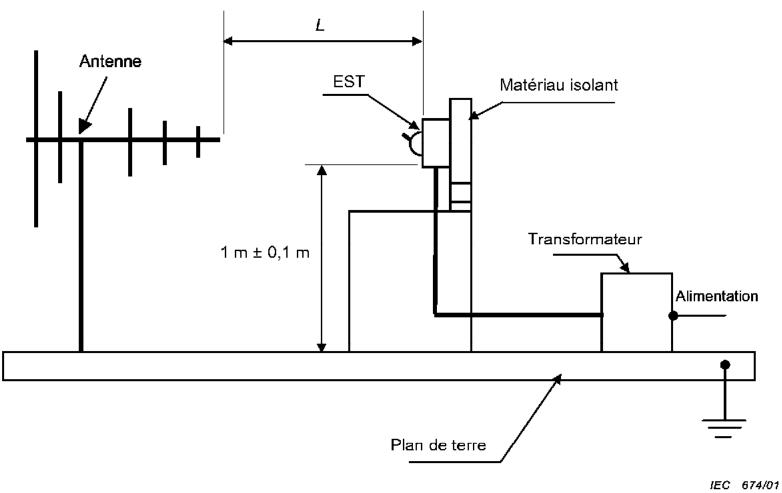

IEC 673/01


Légende

L longueur totale de câble

NOTE Comme variante au réseau de couplage-découplage M1, M2 ou M3 peuvent être utilisés, auquel cas les deux ou trois conducteurs, selon ce qui est applicable, sont raccordés au même point de l'EST.

Figure F.23 – Installation d'essai pour les perturbations conduites, induites par les champs radioélectriques (mode commun) selon F.4.7.1 – Configuration trois phases



Key | IEC 673/01

L total cable length

NOTE As an alternative to the coupling-decoupling network M1, M2 or M3 may be used in which case the two or three connecting wires, as applicable, are connected to the same point of the EUT.

Figure F.23 – Test set-up for conducted disturbances induced by radio-frequency fields (common mode) in accordance with F.4.7.1 – Three-phase configuration

Légende

L 10 m ou 3 m conformément à la norme de référence

Figure F.24 – Installation d'essai d'émission rayonnée

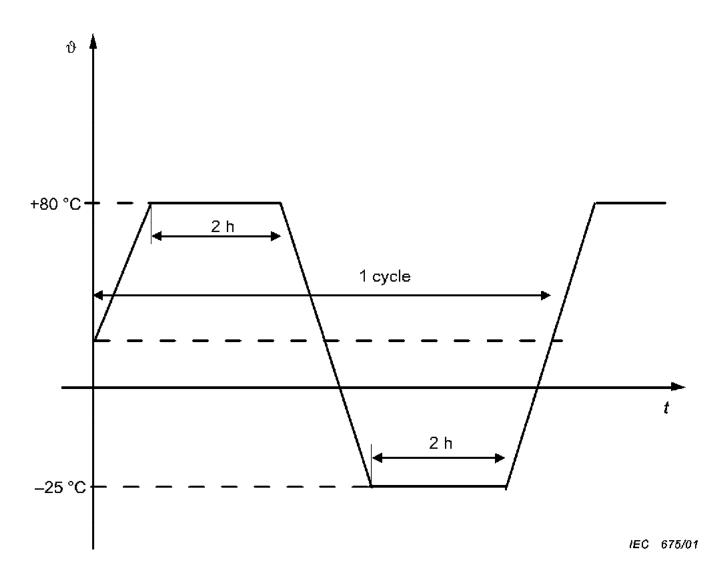


Figure F.25 – Cycles de variation de température avec un taux de variation spécifié selon F.9.1

Key

L 10 m or 3 m according to reference standard

Figure F.24 - Radiated emission test set-up

Ground plane

IEC 674/01

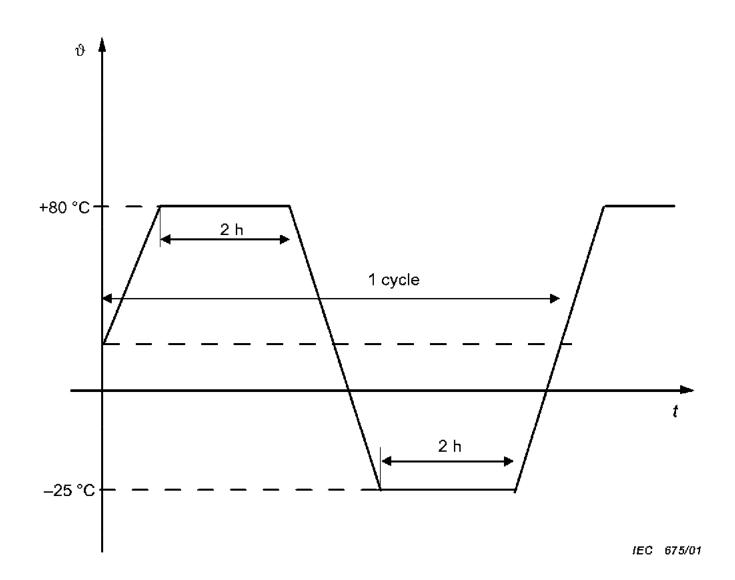


Figure F.25 – Temperature variation cycles at a specified rate of change in accordance with F.9.1

Annexe G (normative)

Puissance dissipée

G.1 Généralités

La puissance dissipée n'est pas une caractéristique fondamentale d'un disjoncteur et ne doit pas être nécessairement indiquée sur le produit.

Elle donne quelques indications sur la chaleur produite dans des conditions spécifiées.

Le mesurage de la puissance doit être fait à l'air libre, sur des échantillons neufs, et doit être exprimé en watts.

G.2 Méthode d'essai

G.2.1

La puissance dissipée est évaluée comme suit (voir figure G.1).

$$\sum_{k=1}^{k=\rho} \Delta U_k I_k \cos \varphi_k$$

οù

p est le nombre de pôles de phase;

k est le numéro du pôle;

 ΔU est la chute de tension;

I est le courant d'essai qui doit être égal à $I_{\rm n}$ selon les tolérances indiquées en 8.3.2.2.2;

 $\cos \phi$ est le facteur de puissance.

L'usage d'un wattmètre sur chaque pôle est recommandé.

G.2.2

Pour les disjoncteurs pour courant alternatif dont le courant assigné ne dépasse pas 400 A, il est admis d'effectuer le mesurage en courant alternatif monophasé sans mesurage du facteur de puissance.

La puissance dissipée est évaluée comme suit, les connections étant en conformité avec la figure G.2.

$$\sum_{k=1}^{k=p} \Delta U_k I_n$$

οù

p est le nombre de pôles de phase;

k est le numéro du pôle;

 ΔU est la chute de tension;

In est le courant assigné.

Annex G (normative)

Power loss

G.1 General

Power loss is not a fundamental characteristic of a circuit-breaker and need not be marked on the product.

It gives some indication of the heat generated under specified conditions.

Measurement of power loss shall be made in free air, on new samples, and shall be stated in watts.

G.2 Test methods

G.2.1

Power loss is evaluated as follows, connections being in accordance with figure G.1.

$$\sum_{k=1}^{k=\rho} \Delta U_k I_k \cos \varphi_k$$

where

p is the number of phase poles;

k is the pole number;

 ΔU is the voltage drop;

is the test current which shall be equal to I_n within the tolerances according to 8.3.2.2.2;

 $\cos \varphi$ is the power factor.

The use of a wattmeter on each pole is recommended.

G.2.2

For a.c. circuit-breakers of rated current not exceeding 400 A, it is acceptable to use single-phase a.c. measurement without power factor measurement.

The power loss is evaluated as follows, connections being in accordance with figure G.2.

$$\sum_{k=1}^{k=\rho} \Delta U_k I_n$$

where

p is the number of phase poles;

k is the pole number;

 ΔU is the voltage drop;

In is the rated current.

60947-2 © CEI:1995+A1:1997 +A2:2001

G.2.3

Pour les disjoncteurs pour courant continu, la puissance dissipée doit être mesurée en courant continu.

Elle est évaluée comme en G.2.2.

G.3 Procédure d'essai

L'évaluation de la puissance dissipée doit être effectuée sous courant assigné dans les conditions de régime établi de température.

La chute de tension doit être mesurée entre les bornes d'entrée et de sortie sur chaque pôle.

Les fils de raccordement aux instruments de mesure (par exemple voltmètre, wattmètre) doivent être torsadés entre eux. Les boucles de mesure doivent être aussi petites que possible et positionnées de façon semblable pour chaque pôle.

Pour évaluer la puissance dissipée d'un disjoncteur pour courant alternatif à trois et quatre pôles selon G.2.1, l'essai est effectué avec un courant sur les trois phases (voir figure G.1) sans courant dans le quatrième pôle dans le cas d'un disjoncteur tétrapolaire.

G.2.3

For d.c. circuit-breakers, the power loss shall be measured with d.c. current.

It is evaluated as in G.2.2.

G.3 Test procedure

The power loss evaluation shall be made under rated current steady-state temperature conditions.

The voltage drop shall be measured between incoming and outgoing terminals on each pole.

The connecting leads to measuring instruments (e.g. voltmeter, wattmeter) shall be twisted together. The measuring loop shall be as small as practicable and shall be positioned similarly for each pole.

For evaluating the power loss of three-pole and four-pole a.c. circuit breakers according to G.2.1, the test is performed under three-phase current conditions (see figure G.1), without current in the fourth pole in the case of four-pole circuit-breakers.

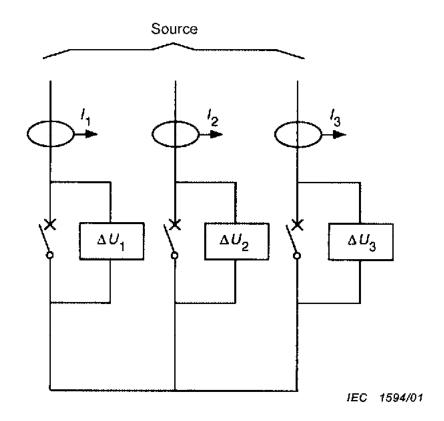


Figure G.1 – Exemple de mesure de la puissance dissipée selon G.2.1

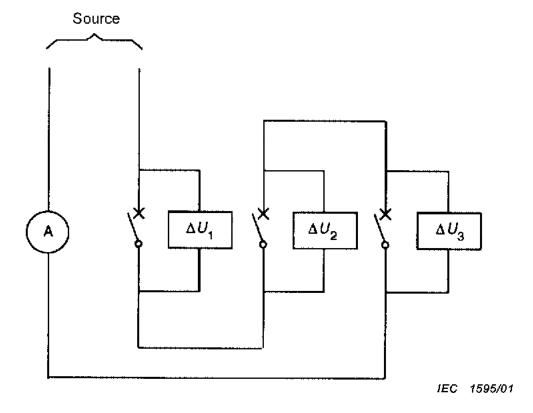


Figure G.2 – Exemple de mesure de la puissance dissipée selon G.2.2 et G.2.3

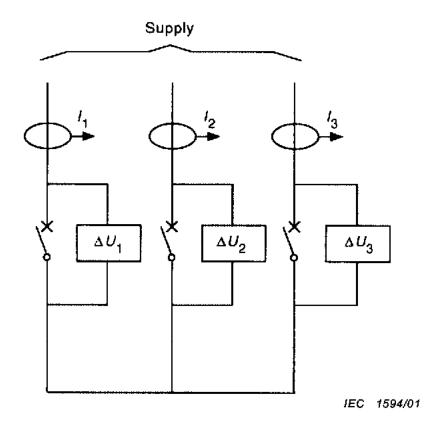


Figure G.1 – Example of power loss measurement according to G.2.1

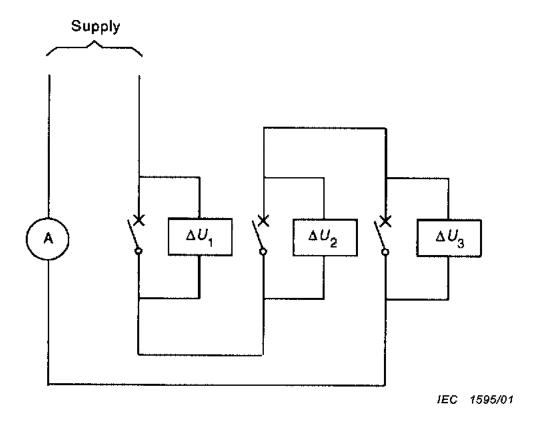


Figure G.2 – Example of power loss measurement according to G.2.2 and G.2.3

60947-2 © CEI:1995+A1:1997 +A2:2001

Annexe H

(normative)

Séquence d'essais pour les disjoncteurs pour réseaux IT

NOTE Cette séquence d'essais est prévue pour couvrir le cas d'un deuxième défaut à la terre en présence d'un premier défaut sur le côté opposé d'un disjoncteur lorsqu'il est installé dans un réseau IT (voir 4.3.1.1).

H.1 Généralités

Cette séquence d'essai est applicable aux disjoncteurs multipolaires pour réseaux IT, selon 4.3.1.1; elle comprend les essais suivants:

Essai	Article
Court-circuit sur un pôle séparément $(I_{ T})$	H.2
Vérification de la tenue diélectrique	H.3
Vérification des déclencheurs de surcharge	H.4

H.2 Court-circuit sur un pôle séparément

Un essai de court-circuit est fait sur les pôles individuels d'un disjoncteur multipolaire dans les conditions de 8.3.2 à une valeur du courant $I_{\rm IT}$ égale à

 1,2 fois le réglage maximal du courant de déclenchement du déclencheur à retard de courte durée ou en l'absence d'un tel déclencheur, 1,2 fois le réglage maximal du courant de déclenchement du déclencheur instantané,

ou, le cas échéant

1,2 fois le réglage maximal du courant de déclenchement du déclencheur à retard indépendant,
 mais ne dépassant pas 50 kA.

NOTE Des valeurs supérieures à $I_{\rm IT}$ peuvent être requises, essayées et déclarées par le constructeur.

La tension appliquée doit être la tension entre phases correspondant à la tension maximale assignée d'emploi du disjoncteur pour laquelle il est adapté pour des réseaux IT. Le nombre d'échantillons à essayer et le réglage des déclencheurs réglables doivent être conformes au tableau 10. Le facteur de puissance doit être conforme au tableau 11, selon le courant d'essai.

Le circuit d'essai doit être conforme à 8.3.4.1.2 et à la figure 9 de la partie 1, l'alimentation S provenant de deux phases d'une alimentation triphasée, l'élément fusible F étant raccordé à la phase restante. Le ou les pôles disponibles doivent aussi être raccordés à cette phase par l'élément fusible F.

La séquence de manoeuvre doit être:

$$O - t - CO$$

et doit être effectuée sur chaque pôle pris séparément, à tour de rôle.

H.3 Vérification de la tenue diélectrique

A la suite de l'essai selon l'article H.2, la tenue diélectrique doit être vérifiée conformément à 8.3.5.3.

Annex H (normative)

-317-

Test sequence for circuit-breakers for IT systems

NOTE This test sequence is intended to cover the case of a second fault to earth in presence of a first fault on the opposite side of a circuit-breaker when installed in IT systems (see 4.3.1.1).

H.1 General

This test sequence applies to multipole circuit-breakers for application on IT systems, in accordance with 4.3.1.1; it comprises the following tests:

Test	Clause
Individual pole short-circuit (I _{IT})	H.2
Verification of dielectric withstand	H.3
Verification of overload releases	H.4

H.2 Individual pole short circuit

A short-circuit test is made on the individual poles of a multipole circuit-breaker under the general conditions of 8.3.2, at a value of current $I_{\rm IT}$ equal to

 1,2 times the maximum setting of the short-time delay release tripping current or, in the absence of such a release, 1,2 times the maximum setting of the tripping current of the instantaneous release,

or, where relevant

1,2 times the maximum setting of the definite time delay release tripping current,

but not exceeding 50 kA.

NOTE Values higher than l_{iT} may be required, tested instead and declared by the manufacturer.

The applied voltage shall be the phase-to-phase voltage corresponding to the maximum rated operational voltage of the circuit-breaker at which it is suitable for application on IT systems. The number of samples to be tested and the setting of adjustable releases shall be in accordance with table 10. The power factor shall be according to table 11, appropriate to the test current.

The test circuit shall be according to 8.3.4.1.2 and figure 9 of Part 1, the supply S being derived from two phases of a three-phase supply, the fusible element F being connected to the remaining phase. The remaining pole or poles shall also be connected to this phase via the fusible element F.

The sequence of operations shall be

$$0-t-CO$$

and shall be made on each phase pole separately, in turn.

H.3 Verification of dielectric withstand

Following the test according to clause H.2, the dielectric withstand shall be verified according to 8.3.5.3.

60947-2 © CEI:1995+A1:1997 +A2:2001

H.4 Vérification des déclencheurs de surcharge

A la suite de l'essai selon l'article H.3, le fonctionnement des déclencheurs doit être vérifié conformément à 8.3.5.4.

H.5 Marquage

Les disjoncteurs pour lesquels toutes les valeurs de tension assignée ont été essayées selon cette annexe ou sont couvertes par de tels essais ne nécessitent aucun marquage supplémentaire.

Les disjoncteurs pour lesquels toutes les valeurs de tension assignée n'ont pas été essayées selon cette annexe ou ne sont pas couvertes par de tels essais doivent être identifiés par le symbole (r) qui doit être marqué sur le disjoncteur juste après ces valeurs de tensions assignées, par exemple 690 V (r) conformément à 5.2, point b).

NOTE Lorsqu'un disjoncteur n'a pas été essayé selon cette annexe, un marquage unique avec le symbole peut être utilisé pourvu qu'il soit placé de telle façon qu'il couvre de façon non ambiguë toutes les tensions assignées.

H.4 Verification of overload releases

Following the test according to clause H.3, the operation of the overload releases shall be verified according to 8.3.5.4.

H.5 Marking

Circuit-breakers for which all values of rated voltage have been tested according to this annex or are covered by such testing require no additional marking.

Circuit-breakers for which all values of rated voltage have not been tested according to this annex or are not covered by such testing shall be identified by the symbol (x) which shall be marked on the circuit-breaker immediately following these values of rated voltage, e.g, 690 V (x) in accordance with 5.2, item b).

NOTE Where a circuit-breaker has not been tested according to this annex, a single marking by the symbol (pr) may be used provided it is so placed that it unmistakably covers all voltage ratings.

Annexe J (informative)

Compatibilité électromagnétique (CEM) -Prescriptions et essais pour les disjoncteurs

Imm	nunité		Prescriptions	Essai
J.1.1 Disjoncteur		oncteurs ne comprenant pas de circuits	7.3.2.1	Non requis
	élec	troniques		
J.1.2	Disjo	oncteurs comprenant des circuits	7.3.2.2	
	élec	troniques		
J.1.2	.1 DPR	de l'annexe B		
	(i)	Résistance aux déclenchements intempestifs dans le cas de charge de capacité de réseau	B.7.2.8.1	B.8.6.1
	(ii)	Résistance aux déclenchements intempestifs dans le cas d'amorçage sans courant de suite	B.7.2.8.2	B.8.6.2
	(iii)	Composante continue dans un courant résiduel		
		 DPR type AC 	Aucune	Non requis
		 DPR type A 	B.7.2.9	B.8.7
	(iv)	Variations de la fréquence industrielle	B.7.2.11	B.8.2, B.8.4
	(v)	Transitoires rapides électriques en salves	B.7.2.12.1	B.8.12.1
	(vi)	Immunité aux ondes de choc	B.7.2.12.2	B.8.12.2
	(vii)	Champ électromagnétique aux fréquences radioélectriques rayonnées	B.7.2.12.3	B.8.12.3
	(viii)	Perturbations conduites induites par des champs aux fréquences radioélectriques	B.7.2.12.4	A l'étude
	(ix)	Décharges électrostatiques	B.7.2.13	B.8.13
	(x)	Variations de l'amplitude de la tension	B.7.2.14 Voir NOTE 1	B.8.2.4, B.8.2 B.8.4, B.8.8
	(xi)	Chute de tension	B.7.2.14	B.8.9.2
	(xii)	Déséquilibre de tension	B.7.2.14 Voir NOTE 1	B.8.9.1
	(xiii)	Champs magnétiques à fréquence industrielle	7.3.2	Voir NOTE 2
J.1.2		oncteurs à protection électronique contre les ntensités selon l'annexe F (voir notes 3 et 4)		
	(i)	Harmoniques, interharmoniques, courants non sinusoïdaux	F.2.1	F.4.1
	(ii)	Creux de courant et interruptions	F 2.1	F.4.2
	(iii)	Décharges électrostatiques	F.2.1	F.4.3
	(iv)	Champs électromagnétiques rayonnés aux fréquences radioélectriques	F.2.1	F.4.4
	(v)	Transitoires électriques rapides en salves	F.2.1	F.4.5
	(vi)	Ondes de choc	F.2.1	F.4.6
	(vii)	Perturbations conduites, induites par les champs radioélectriques	F.2.1	F.4.7
J.1.2	•	oncteurs comprenant des circuits électroniques es que ceux cités ci-dessus	7.3.2.2	8.3.9

(suite à la page suivante)

Annex J (informative)

Electromagnetic compatibility (EMC) – Requirements and tests for circuit-breakers

J.1	Immuni	ty		Requirements	Test
	J.1.1	Circu	uit-breakers not incorporating electronic circuits	7.3.2.1	Not required
	J.1.2	Circu	uit-breakers incorporating electronic circuits	7.3.2.2	
	J.1.2.1 CBRs to annex B				
		(i)	Resistance to unwanted tripping in case of loading of the network capacitance	B.7.2.8.1	B.8.6.1
		(ii)	Resistance to unwanted tripping in case of flashover without follow-on current	B.7.2.8.2	B.8.6.2
		(iii)	DC component in a residual current		
			- CBR type AC	None	Not required
			- CBR type A	B.7.2.9	B.8.7
		(iv)	Power frequency variations	B.7.2.11	B.8.2, B.8.4
		(v)	Electrical fast transients/bursts	B.7.2.12.1	B.8.12.1
		(vi)	Surge immunity	B.7.2.12.2	B.8.12.2
		(vii)	Radiated radiofrequency electromagnetic field	B.7.2.12.3	B.8.12.3
		(viii)	Conducted disturbances induced by radiofrequency fields	B.7.2.12.4	Under consideration
		ix)	Electrostatic discharges	B.7.2.13	B.8.13
		(x)	Voltage amplitude variations	B.7.2.14 See NOTE 1	B.8.2.4, B.8.2.5 B.8.4, B.8.8
		(xi)	Voltage drop	B.7.2.14	B.8.9.2
		(xii)	Voltage unbalance	B.7.2.14 See NOTE 1	B.8.9.1
		(xiii)	Power frequency magnetic field	7.3.2	See NOTE 2
	J.1.2.2	Circuit-breakers with electronic over-current protection according to annex F (see notes 3 and 4)			
		(i)	Harmonics, interharmonics, non-sinusoidal currents	F.2.1	F.4.1
		(ii)	Current dips and interruptions	F 2.1	F.4.2
		(iii)	Electrostatic discharges	F.2.1	F.4.3
		(iv)	Radiated radio-frequency electromagnetic fields	F.2.1	F.4.4
		(v)	Electrical fast transients/bursts	F.2.1	F.4.5
		(vi)	Surges	F.2.1	F.4.6
		(vii)	Conducted disturbances induced by radio- frequency fields	F.2.1	F.4.7
	J.1.2.3		uit-breakers incorporating electronic circuits other those listed above	7.3.2.2	8.3.9

(continued on next page)

J.2	Emissi	on	Prescriptions	Essai
	J.2.1	Disjoncteurs ne comprenant pas de circuits électroniques	7.3.3.1	Non requis
	J.2.2	Disjoncteurs comprenant des circuits électroniques ne fonctionnant pas pendant des périodes étendues (voir 7.3.3.2.1)	7.3.3.2.1	Non requis
	J.2.3	Disjoncteurs comprenant des circuits électroniques fonctionnant pendant des périodes étendues (voir 7.3.3.2.1)		
	J.2.3.1	DPR selon l'annexe B	B.7.3	B.8.14
	J.2.3.2	Disjoncteurs à protection électronique contre les surintensités selon l'annexe F	F.2.1	F.5
	J.2.3.3	Disjoncteurs comprenant des circuits électroniques fonctionnant pendant des périodes étendues (voir 7.3.3.2.1) autres que ceux cités ci-dessus	7.3.4.2 de la CEI 60947-1	Voir NOTE 5

- NOTE 1 Les DPR fonctionnellement dépendants de la tension d'alimentation sont soumis aux prescriptions de B.7.2.11.
- NOTE 2 Couvert par l'essai avec courant dans les pôles principaux (par exemple séquence d'essais III).
- NOTE 3 Les disjoncteurs selon l'annexe F comprennent des déclencheurs de surcharge électroniques indépendants de la tension d'alimentation et aucune prescription ou aucun essai pour les variations de la tension d'alimentation ne sont donc applicables.
- NOTE 4 Les prescriptions concernant des phénomènes autres que ceux cités sont à l'étude, par exemple les courants continus dans le réseau à courant alternatif.
- NOTE 5 Les méthodes d'essais sont à l'étude.

J.2	Emissio	on	Requirements	Test
	J.2.1	Circuit-breakers not incorporating electronic circuits	7.3.3.1	Not required
	J.2.2	Circuit-breakers incorporating electronic circuits not operating for extended periods (see 7.3.3.2.1)	7.3.3.2.1	Not required
	J.2.3	Circuit-breakers incorporating electronic circuits operating for extended periods (see 7.3.3.2.1)		
	J.2.3.1	CBRs according to annex B	B.7.3	B.8.14
	J.2.3.2	Circuit-breakers with electronic over-current protection according to annex F	F.2.1	F.5
	J.2.3.3	Circuit-breakers incorporating electronic circuits operating for extended periods (see 7.3.3.2.1) other than those listed above	7.3.4.2 of IEC 60947-1	See NOTE 5

- NOTE 1 CBRs functionally dependent on line voltage are subject to the requirement of B.7.2.11.
- NOTE 2 Covered by the test with current in the main poles (e.g. test sequence III).
- NOTE 3 Circuit-breakers according to annex F incorporate electronic overload releases independent of the supply voltage and no requirements or tests for supply voltage variations are therefore applicable.
- NOTE 4 Requirements concerning phenomena other than those listed are under consideration, for example direct currents in the a.c. network.
- NOTE 5 Test methods are under consideration.

Annexe K (informative)

Glossaire des symboles pour les produits couverts par cette norme

I O O N N U _c I _n U _{imp} U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	5.2 5.2 5.2 5.2 5.2 4.7.2 4.3.2.3 4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1 4.3.5.4
N U _C I _n U _{imp} U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	5.2 5.2 5.2 4.7.2 4.3.2.3 4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
U _C I _n U _{imp} U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	5.2 4.7.2 4.3.2.3 4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
U _C I _n U _{imp} U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	5.2 4.7.2 4.3.2.3 4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
In Uimp Ui Ue Ics Icm Icw Igu Is	4.7.2 4.3.2.3 4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
In Uimp Ui Ue Ics Icm Icw Igu Is	4.3.2.3 4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
U _{imp} U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	4.3.1.3 4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
U _{imp} U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	4.3.1.2 4.3.1.1 4.3.5.2.2 4.3.5.1
U _i U _e I _{cs} I _{cm} I _{cw} I _{cu} I _s	4.3.1.1 4.3.5.2.2 4.3.5.1
I _{cs} I _{cm} I _{cw} I _{cu} I _s	4.3.5.2.2 4.3.5.1
I _{cs} I _{cm} I _{cw} I _{cu} I _s	4.3.5.1
I _{cm} I _{cw} I _{cu}	
I _{cw} I _{GU} I _s	4.3.5.4
I _{cu}	1
I _S	4.3.5.2.1
	2.17.4
I _B	2.17.6
/ _{the}	4.3.2.2
I _{th}	4.3.2.1
	B.4.4.1
	B.4.4.2
/ _R	*
	*
	*
	*
I _{su}	Annexe C
/ _{IT}	Annexe H
<i>i</i>	Figure K.1 et annexe L
t _i	*
(মি)	Annexe H
	Annexe B
_	Annexe B
_	Annexe B
_	*
_	*
	*
C Su	4.3.1.1
Δ_{+}	B.4.2
<u>-</u>	B.5.1
	/ _R t _R / _g t _g / _{su} / _{IT} / _i t _i / _{Δm} / _{Δn} / _{Δn} / _{ΔR} / _{sd} t _{sd}

Annex K (informative)

Glossary of symbols related to products covered by this standard

Characteristics list	Symbol	Reference
Circuit-breaker, closed position	1	5.2
Circuit-breaker, open position	0	5.2
Isolation suitability		5.2
Neutral pole terminal	N	5.2
Protective earth terminal		5.2
Rated control circuit voltage	U _C	4.7.2
Rated current	I _n	4.3.2.3
Rated impulse withstand voltage	U _{imp}	4.3.1.3
Rated insulation voltage	Ui	4.3.1.2
Rated operational voltage	U _e	4.3.1.1
Rated service short-circuit breaking capacity	I _{cs}	4.3.5.2.2
Rated short-circuit making capacity	I _{cm}	4.3.5.1
Rated short time withstand current	I _{cw}	4.3.5.4
Rated ultimate short-circuit breaking capacity	/cu	4.3.5.2.1
Selectivity limit current	I _s	2.17.4
Take-over current	I _B	2.17.6
Conventional enclosed thermal current	/ _{the}	4.3.2.2
Conventional free air thermal current	I _{th}	4.3.2.1
CBRs of type AC		B.4.4.1
CBRs of type A	To Tax	B.4.4.2
Current setting of adjustable overload release	I _R	*
Corresponding tripping time	t _R	*
Ground fault current setting	l _g	*
Corresponding tripping time	t _g	*
Individual pole short-circuit breaking capacity (phase/earthed systems)	/ _{su}	Annex C
Individual pole short-circuit test current (IT systems)	/ _{IT}	Annex H
Instantaneous pick-up current	I _i	Figure K.1 and annex L
Maximum corresponding tripping time	t _i	*
Not suitable for use in IT systems	ŶŔ.	Annex H
Rated residual short-circuit making and breaking capacity	$I_{\Delta \mathrm{m}}$	Annex B
Rated residual non-operating current	$I_{\Delta no}$	Annex B
Rated residual operating current	$I_{\Delta n}$	Annex B
Residual operating current	$I_{\Delta R}$	*
Short time pick-up current	/sd	*
Corresponding tripping time	t _{sd}	*
Suitability for phase earthed systems	C	4.3.1.1
Limiting non actuating time at 2 $t_{\Delta n}$	Δ_{t}	B.4.2
Time delay CBR with limiting non actuating time of 0,06 s	Ś	B.5.1
* These terms are not used in this standard. For their identificat	ion, see figure K.1.	•
moso torms are not used in this standard. For their identificat	, ooo ngaro It. I.	

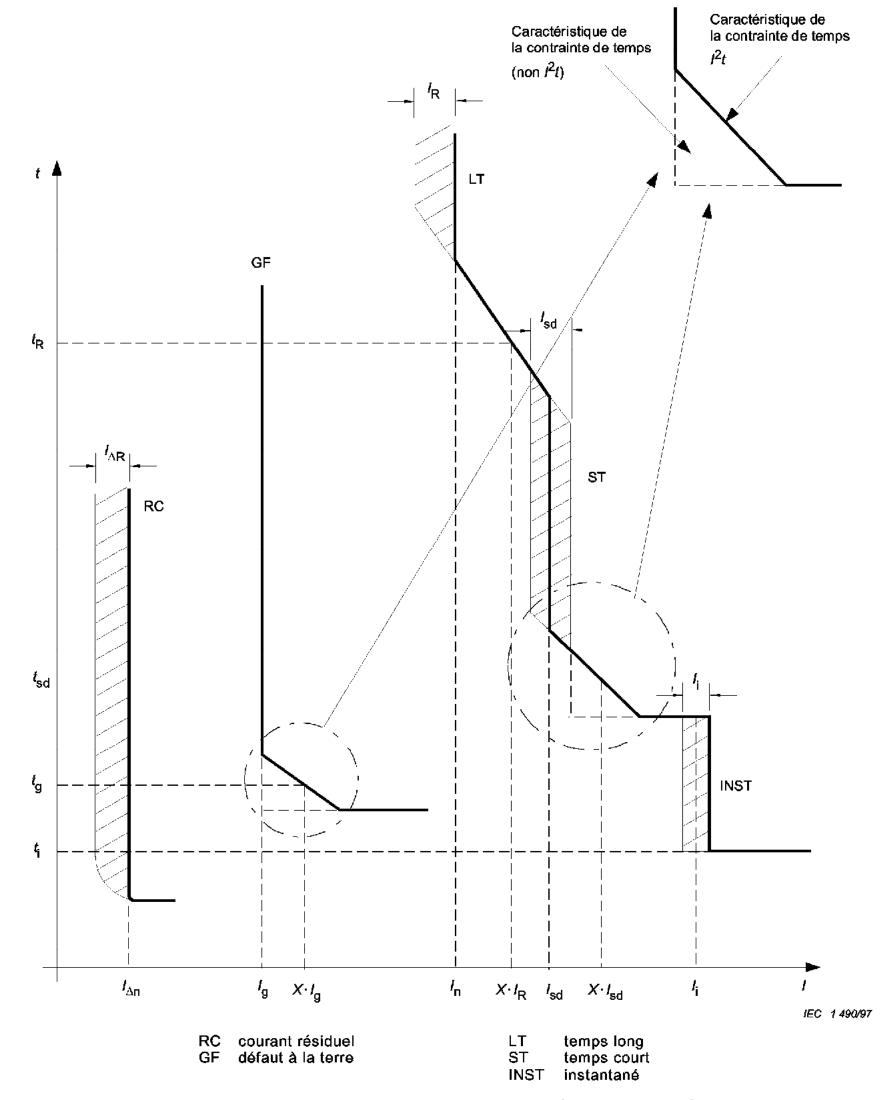


Figure K.1 – Relation entre les symboles et les caractéristiques de déclenchement

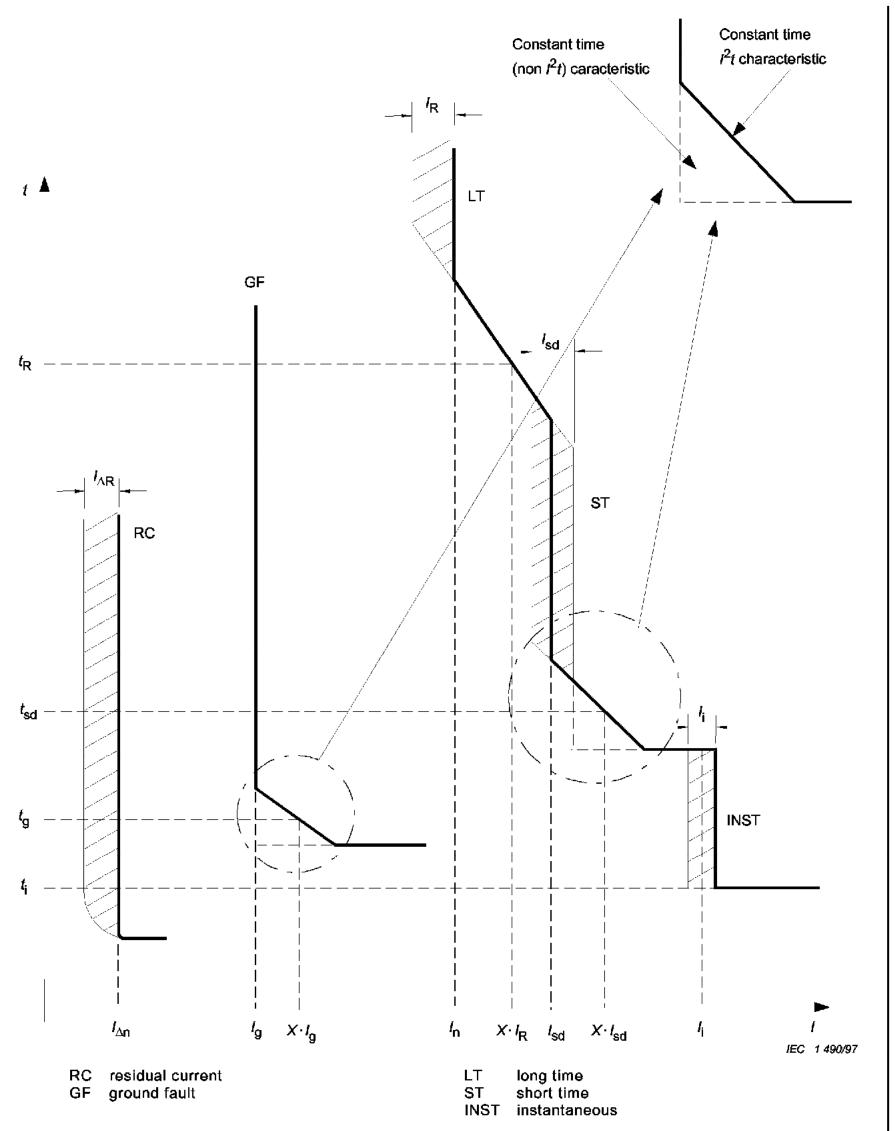


Figure K.1 – Relationship between symbols and tripping characteristics

Annexe L

(normative)

Disjoncteurs ne satisfaisant pas aux prescriptions concernant les protections de surintensité

L.1 Domaine d'application

La présente annexe traite des disjoncteurs qui ne satisfont pas aux prescriptions concernant les protections de surintensité spécifiées dans la partie principale de cette norme, ci-après désignés IDD. Ces appareils sont capables d'être déclenchés par un dispositif auxiliaire, par exemple un déclencheur shunt ou à minimum de tension. Ils n'assurent pas la protection des circuits¹⁾ mais peuvent déclencher dans des conditions de court-circuit à des fins d'auto-protection. Ils possèdent une caractéristique assignée de court-circuit conditionnel et peuvent être utilisés pour le sectionnement. Ils peuvent incorporer des accessoires tels que des contacts auxiliaires et d'alarme, à des fins de commande, et/ou des opérateurs à distance.

Un IDD fait partie de la gamme des disjoncteurs, étant dérivé d'un disjoncteur équivalent (L.2.1) non équipé de déclencheurs à maximum de courant (classe Y) ou uniquement sans déclencheurs de surcharge (classe X), voir L.3.

L.2 Définitions

En complément des définitions données à l'article 2, les définitions suivantes s'appliquent:

L.2.1

disjoncteur équivalent

disjoncteur dont l'IDD est dérivé, qui a été essayé conformément à la présente norme et qui possède la même taille que l'IDD

L.2.2

dispositif de protection contre les surintensités (DPS)

dispositif prévu pour la protection d'un IDD contre les surintensités par interruption, et comportant une protection contre les surcharges non moins efficace que celle du disjoncteur équivalent et un $l_{\rm cu}$ (pour un disjoncteur) ou un pouvoir de coupure (pour un fusible) égal ou supérieur à celui du disjoncteur équivalent

NOTE Le DPS peut être le disjoncteur équivalent.

L.3 Classification

Les IDD sont classés comme suit:

- classe X: avec déclencheurs instantanés intégrés et non réglables de court-circuit pour une autoprotection;
- classe Y: sans déclencheurs intégrés de court-circuit.

NOTE Les IDD avec déclencheurs instantanés intégrés réglables ou non réglables de court-circuit pour la protection des matériels et des circuits sont à l'étude.

¹⁾ Cela s'applique en particulier à la protection contre les surcharges.

Annex L (normative)

Circuit-breakers not fulfilling the requirements for overcurrent protection

L.1 Scope

This annex covers circuit-breakers which do not fulfil the requirements for overcurrent protection specified in the main part of this standard, hereinafter referred as CBIs. They are capable of being tripped by an auxiliary device, e.g. shunt or undervoltage release. They do not provide circuit protection¹⁾ but may trip under short-circuit conditions for self-protection. They have a conditional short-circuit rating and may be used for isolation. They may incorporate accessories such as auxiliary and alarm switches for control purposes, and/or remote operators.

A CBI forms part of a circuit-breaker range, being derived from an equivalent circuit-breaker (L.2.1) by omitting the overcurrent releases (class Y) or the overload releases only (class X), see L.3.

L.2 Definitions

In addition to the definitions given in clause 2, the following definitions apply:

L.2.1

equivalent circuit-breaker

circuit-breaker from which the CBI has been derived, which has been tested according to this standard and which has the same frame size as the CBI

L.2.2

overcurrent protective device (OCPD)

device intended to protect a CBl against overcurrents by interrupting them, and incorporating overload protection no less effective than that of the equivalent circuit-breaker and an $I_{\rm cu}$ (for a circuit-breaker) or a breaking capacity (for a fuse) equal to or higher than that of the equivalent circuit-breaker

NOTE The OCPD may be the equivalent circuit-breaker.

L.3 Classification

CBIs are classified as follows:

- class X: with integral non-adjustable instantaneous short-circuit releases for self-protection;
- class Y: without integral short-circuit releases.

NOTE CBIs with integral adjustable or non-adjustable instantaneous short-circuit releases for equipment and circuit protection are under consideration.

¹⁾ This applies in particular to overload protection.

+A2:2001

L.4 Valeurs assignées

L.4.1 Courant assigné (I_n)

Le courant assigné d'un IDD ne doit pas excéder le courant assigné du disjoncteur équivalent.

NOTE Le courant assigné d'un IDD peut être en rapport avec le courant assigné correspondant à la catégorie d'emploi AC-22 (voir annexe A de la CEI 60947-1).

L.4.2 Courant assigné de court-circuit conditionnel (Icc)

Le paragraphe 4.3.6.4 de la CEI 60947-1 s'applique.

Un IDD peut avoir une valeur de $l_{\rm cc}$ égale ou supérieure à celle du $l_{\rm cu}$ du disjoncteur équivalent.

L.5 Informations sur le matériel

De plus, il doit être marqué de la façon suivante:

pour 5.2, point a): avec le symbole selon la classification:

où *l*_i est le courant de réglage de déclenchement instantané.

- pour 5.2, point c): avec les points suivants:
 - courant assigné de court-circuit conditionnel (I_{cc});
 - le DPS, s'il est spécifié.

Il convient que les instructions du constructeur attirent l'attention sur le fait que les IDD ne procurent pas de protection contre les surintensités.

L.6 Dispositions relatives à la construction et au fonctionnement

Un IDD, étant dérivé du disjoncteur équivalent (voir L.2.1), satisfait à toutes les prescriptions relatives à la construction et au fonctionnement applicables de l'article 7, à l'exception de 7.2.1.2.4.

NOTE Un IDD peut en outre être conforme à la CEI 60947-32 et être marqué en conséquence.

²⁾ CEI 60947-3:1999, Appareillage à basse tension – Partie 3: Interrupteurs, sectionneurs, interrupteurssectionneurs et combinés-fusibles.

L.4 Rated values

L.4.1 Rated current (I_n)

The rated current of a CBI shall not exceed the rated current of the equivalent circuit-breaker.

NOTE The rated current of a CBI may be correlated to the rated current corresponding to utilization category AC-22 (see annex A of IEC 60947-1).

L.4.2 Rated conditional short-circuit current (Icc)

Subclause 4.3.6.4 of IEC 60947-1 applies.

A CBI may have a value of $I_{\rm cc}$ equal to or higher than that of the $I_{\rm cu}$ of the equivalent circuit-breaker.

L.5 Product information

A CBI shall be marked according to 5.2, as relevant, except that the symbol of suitability for isolation, if applicable, shall be ______, replacing the symbol shown in the second dashed item of 5.2 a).

In addition it shall be marked as follows:

- for 5.2, item a): with the symbol according to the classification:

as applicable.

where I_i is the instantaneous tripping current.

- for 5.2, item c): with the following items:
 - rated conditional short-circuit-current (I_{cc});
 - the OCPD, if specified.

Manufacturer's instructions should draw attention to the fact that CBIs do not provide overcurrent protection.

L.6 Constructional and performance requirements

A CBI, being derived from the equivalent circuit-breaker (see L.2.1), complies with all the applicable construction and performance requirements of clause 7, except 7.2.1.2.4.

NOTE A CBI may additionally comply with IEC 60947-32) and be marked accordingly.

²⁾ IEC 60947-3:1999, Low-voltage switchgear and controlgear – Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units.

L.7 Essais

L.7.1 Généralités

L.7.1.1 IDD de classe X

Le DPS est spécifié.

Cas 1:

 $I_{cc} = I_{cu}$ du disjoncteur équivalent.

Aucun essai supplémentaire n'est requis.

NOTE Le DPS spécifié peut être

- le disjoncteur équivalent (voir L.2.1);
- un autre disjoncteur (voir L.2.2);
- un fusible de courant conventionnel de fusion \leq au courant de déclenchement conventionnel du disjoncteur équivalent et de pouvoir de coupure \geq I_{cc} de l'IDD.

Cas 2:

 $I_{cc} > I_{cu}$ du disjoncteur équivalent.

Les essais doivent être effectués conformément à L.7.2.1 et L.7.2.2, avec le DPS spécifié.

Cela s'applique lorsque

 le DPS spécifié est un disjoncteur de même taille que le disjoncteur équivalent et avec un I_{cu} ≥ I_{cc} de l'IDD,

ou

- le DPS spécifié est un fusible de courant conventionnel de fusion \leq au courant de déclenchement conventionnel du disjoncteur équivalent et de pouvoir de coupure $\geq I_{cc}$ de l'IDD.

L.7.1.2 IDD de classe Y

Aucun essai n'est requis pourvu qu'une des deux conditions suivantes soit remplie:

- condition 1: I_{cc} ≤ I_{cw} du disjoncteur équivalent;
- condition 2: $I_{\rm cc} \leq$ au courant maximal de déclenchement instantané du disjoncteur équivalent.

Si aucune des conditions ci-dessus n'est remplie, les essais sont requis comme suit:

Cas 1:

Le DPS est spécifié par le constructeur.

Les essais doivent être effectués conformément à L.7.2.1 et L.7.2.2.

+A2:2001

L.7 Tests

L.7.1 General

L.7.1.1 CBI of class X

The OCPD is specified.

Case 1:

 $I_{cc} = I_{cu}$ of the equivalent circuit-breaker.

No additional tests are required.

NOTE The specified OCPD may be

- the equivalent circuit-breaker (see L.2.1);
- another circuit-breaker (see L.2.2);
- a fuse of conventional fusing current \leq the conventional tripping current of the equivalent circuit-breaker and of a breaking capacity $\geq I_{\infty}$ of the CBI.

Case 2:

 $I_{cc} > I_{cu}$ of the equivalent circuit-breaker.

Tests shall be made according to L.7.2.1 and L.7.2.2, with the specified OCPD.

This applies when

- the specified OCPD is a circuit-breaker of the same frame size as the equivalent circuit-breaker and of $I_{cu} \ge I_{cc}$ of the CBI,

or

- the specified OCPD is a fuse having a conventional fusing current \leq the conventional tripping current of the equivalent circuit-breaker and a breaking capacity $\geq I_{cc}$ of the CBI.

L.7.1.2 CBI of class Y

No tests are required, provided that one of the following two conditions are fulfilled:

- condition 1: I_{cc} ≤ I_{cw} of the equivalent circuit-breaker;
- condition 2: $I_{cc} \le$ maximum instantaneous tripping current of the equivalent circuit-breaker.

If neither of the above conditions are fulfilled, tests are required as follows:

Case 1:

The OCPD is specified by the manufacturer.

Tests shall be made according to L.7.2.1 and L.7.2.2.

Cas 2:

Le DPS n'est pas spécifié.

Les essais doivent être effectués conformément à L.7.2.1 et L.7.2.3.

L.7.2 Essais de court-circuit conventionnel assignés

L.7.2.1 Généralités

Ces essais doivent être effectués lorsqu'ils sont requis par L.7.1.1 cas 2, ou par L.7.1.2 cas 1 ou cas 2, selon le cas.

L.7.2.1.1 Conditions d'essai

Le paragraphe 8.3.2.6 s'applique.

Le circuit d'essai doit être conforme à la figure A.6, le DPCC étant remplacé par le DPS. Si le DPS est un disjoncteur avec des réglages de surintensité ajustables, ceux-ci doivent être en position maximale.

Si le DPS consiste en un jeu de fusibles, chaque essai doit être effectué avec un jeu de fusibles neufs.

S'il y a lieu, les câbles de connexion doivent être inclus comme spécifié en 8.3.2.6.4, sauf si le DPS est un disjoncteur, auquel cas la longueur totale de câble (0,75 m) associée avec le disjoncteur peut être du côté amont (voir figure A.6).

L.7.2.1.2 Comportement pendant les essais

Le paragraphe 8.3.2.6.5 s'applique.

L.7.2.2 DPS spécifié

Les essais doivent être effectués conformément à L.7.2.2.1, L.7.2.2.2 et L.7.2.2.3.

L.7.2.2.1 Séquence d'essais

La séquence d'essais comprend les essais suivants:

Essai	Paragraphe
Vérification de I _{cc}	L.7.2.2.2
Vérification de la tenue diélectrique	L.7.2.2.3

L.7.2.2.2 Vérification de Icc

L'essai doit être effectué avec un courant présumé égal au $I_{\rm cc}$ de l'IDD.

Chaque essai doit consister en une séquence de manœuvres O – t – CO effectuée conformément à 8.3.5.2, la manœuvre CO étant effectuée par la fermeture de l'IDD.

Après chaque manœuvre, l'IDD doit être fermé et ouvert trois fois manuellement.

+A2:2001

Case 2:

The OCPD is not specified.

Tests shall be made according to L.7.2.1 and L.7.2.3.

L.7.2 Rated conditional short-circuit tests

L.7.2.1 General

These tests shall be made when required by L.7.1.1 case 2, or by L.7.1.2 case 1 or case 2, as applicable.

L.7.2.1.1 Test conditions

Subclause 8.3.2.6 applies.

The test circuit shall be according to figure A.6, SCPD being replaced by OCPD. If the OCPD is a circuit-breaker with adjustable overcurrent settings, these shall be set at maximum.

If the OCPD consists of a set of fuses, each test shall be made with a set of new fuses.

Where applicable, the connecting cables shall be included as specified in 8.3.2.6.4 except that, if the OCPD is a circuit-breaker, the full length of cable (0,75 m) associated with the circuit-breaker may be on the supply side (see figure A.6).

L.7.2.1.2 Behaviour during tests

Subclause 8.3.2.6.5 applies.

L.7.2 2 OCPD specified

Tests shall be made in accordance with L.7.2.2.1, L.7.2.2.2 and L.7.2.2.3.

L.7.2.2.1 Test sequence

The test sequence comprises the following tests:

Test	Subclause
Verification of Icc	L.7.2.2.2
Verification of dielectric withstand	L.7.2.2.3

L.7.2.2.2 Verification of I_{cc}

The test shall be made with a prospective current equal to $I_{\rm cc}$ of the CBI.

Each test shall consist of a O-t-CO sequence of operations made in accordance with 8.3.5.2, the CO operation being made by closing the CBI.

After each operation, the CBI shall be manually closed and opened three times.

L.7.2.2.3 Vérification de la tenue diélectrique

Après l'essai de L.7.2.2.2, la tenue diélectrique doit être vérifiée conformément à 8.3.5.3.

L.7.2.3 DPS non spécifié

Les essais doivent être effectués conformément à L.7.2.3.1, L.7.2.3.2 et L.7.2.3.3.

L.7.2.3.1 Séquence d'essais

La séquence d'essais comprend les essais suivants:

Essai	Paragraphe
Vérification de I _{cc}	L.7.2.3.2
Vérification de la tenue diélectrique	L.7.2.3.3

L.7.2.3.2 Vérification de Icc

L'essai doit être effectué avec un courant présumé égal au $I_{\rm cc}$ de l'IDD.

Chaque essai doit consister en une séquence de manœuvres O - t - CO effectuée conformément à 8.3.5.2, la manœuvre CO étant effectuée par la fermeture de l'IDD.

Pendant l'essai, le courant doit être maintenu pendant trois cycles et ensuite interrompu à la source d'alimentation.

Après chaque manœuvre, l'IDD doit être fermé et ouvert trois fois manuellement.

L.7.2.3.3 Vérification de la tenue diélectrique

Après l'essai de L.7.2.3.2, la tenue diélectrique doit être vérifiée conformément à 8.3.5.3.

Copyright by the International Electrotechnical Commission Mon Oct 25 16:09:50 2004

L.7.2.2.3 Verification of dielectric withstand

Following the test of L.7.2.2.2, the dielectric withstand shall be verified in accordance with 8.3.5.3.

L.7.2.3 OCPD not specified

Tests shall be made in accordance with L.7.2.3.1, L.7.2.3.2 and L.7.2.3.3.

L.7.2.3.1 Test sequence

The test sequence comprises the following tests:

Test	Subclause
Verification of Icc	L.7.2.3.2
Verification of dielectric withstand	L.7.2.3.3

L.7.2.3.2 Verification of Icc

The test shall be made with a prospective current equal to $I_{\rm cc}$ of the CBI.

Each test shall consist of a O-t-CO sequence of operations made in accordance with 8.3.5.2, the CO operation being made by closing the CBI.

During the test, the current shall be maintained for three cycles and then disconnected at the power supply.

After each operation, the CBI shall be manually closed and opened three times.

L.7.2.3.3 Verification of dielectric withstand

Following the test of L.7.2.3.2, the dielectric withstand shall be verified in accordance with 8.3.5.3.

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission

3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare
No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

Mon Oct 25 16:09:51 2004

Q1	Please report on ONE STANDARD and ONE STANDARD ONLY . Enter the exact number of the standard: (e.g. 60601-1-1)		Q6	If you ticked NOT AT ALL in Question 5 the reason is: (tick all that apply)	
		,		standard is out of date	
				standard is incomplete	
				standard is too academic	
Q2	Please tell us in what capacity(ies) you bought the standard (tick all that apply). I am the/a:			standard is too superficial	
				title is misleading	
				I made the wrong choice	
	purchasing agent			other	
	librarian				
	researcher				
	design engineer		Q7	Please assess the standard in the	
	safety engineer			following categories, using	
	testing engineer			the numbers:	
	marketing specialist			(1) unacceptable,(2) below average,	
	other			(3) average,	
				(4) above average,	
Q3	I work for/in/as a:			(5) exceptional,	
	(tick all that apply)			(6) not applicable	
	manufacturing			timeliness	
	manufacturing consultant			quality of writing	
				technical contents	
	government			logic of arrangement of contents	
	test/certification facility			tables, charts, graphs, figures	
	public utility education			other	
	military				
	other	_			
	00101		Q8	I read/use the: (tick one)	
Q4	This standard will be used for:			French text only	
	(tick all that apply)			English text only	
	general reference	—		both English and French texts	
	general reference product research				
	product research product design/development				
	specifications		Q9	Please share any comment on any	
	tenders		QЭ	aspect of the IEC that you would like	e
	quality assessment			us to know:	_
	certification				
	technical documentation				
	thesis			•••••	
	manufacturing	_			
	other	_			
^ -					
Q5	This standard meets my needs:				
	(tick one)				
	not at all				
	nearly				
	fairly well				
	exactly				

La CEI ambitionne de vous offrir les meilleures normes possibles. Pour nous assurer que nous continuons à répondre à votre attente, nous avons besoin de quelques renseignements de votre part. Nous vous demandons simplement de consacrer un instant pour répondre au questionnaire ci-après et de nous le retourner par fax au +41 22 919 03 00 ou par courrier à l'adresse ci-dessous. Merci !

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale

3, rue de Varembé 1211 Genève 20 Suisse

ou

Télécopie: CEI/CSC +41 22 919 03 00

Nous vous remercions de la contribution que vous voudrez bien apporter ainsi à la Normalisation Internationale.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Centre du Service Clientèle (CSC)

Commission Electrotechnique Internationale
3, rue de Varembé
1211 GENÈVE 20
Suisse

Q1	Veuillez ne mentionner qu'UNE SEULE NORME et indiquer son numéro exact: (ex. 60601-1-1)		Q5	Cette norme répond-elle à vos besoins: (une seule réponse)	
	,			pas du tout	
	•••••			à peu près	
				assez bien	
				parfaitement	
Q2	En tant qu'acheteur de cette norme, quelle est votre fonction?		_		
	(cochez tout ce qui convient) Je suis le/un:		Q6	Si vous avez répondu PAS DU TOU Q5, c'est pour la/les raison(s) suiva (cochez tout ce qui convient)	
	agent d'un service d'achat bibliothécaire			la norme a besoin d'être révisée	
		_		la norme est incomplète	
	chercheur			la norme est trop théorique	
	ingénieur concepteur			la norme est trop superficielle	
	ingénieur sécurité			le titre est équivoque	
	ingénieur d'essais			je n'ai pas fait le bon choix	
	spécialiste en marketing			autre(s)	
	autre(s)	••••		• •	
			Q7	Veuillez évaluer chacun des critères dessous en utilisant les chiffres	s ci-
^^	La Lac - 20 -			(1) inacceptable,	
Q3	Je travaille: (cochez tout ce qui convient)			(2) au-dessous de la moyenne,	
	(cochez tout ce qui convient)			(3) moyen,	
	dans l'industrie			(4) au-dessus de la moyenne,	
	comme consultant			(5) exceptionnel,(6) sans objet	
	pour un gouvernement			(o) cano cojet	
	pour un organisme d'essais/			publication en temps opportun	
	certification			qualité de la rédaction	
	dans un service public			contenu technique	
	dans l'enseignement			disposition logique du contenu	
	comme militaire autre(s)			tableaux, diagrammes, graphiques, figures	
				autre(s)	
			Q8	Je lis/utilise: <i>(une seule réponse)</i>	
Q4	Cette norme sera utilisée pour/comm	е		uniquement le texte français	
	(cochez tout ce qui convient)			uniquement le texte français	
	ouvrage de référence			uniquement le texte anglais	_
	une recherche de produit			les textes anglais et français	
	une étude/développement de produit				
	des spécifications		Q9	Vauillaz nous faire part de ves	
	des soumissions		Q3	Veuillez nous faire part de vos observations éventuelles sur la CEI:	<u>.</u>
	une évaluation de la qualité				
	une certification	_ D			
	une documentation technique	_ D			
	une thèse	<u> </u>			
	la fabrication	<u> </u>			
	autre(s)	_			•••••
	<u></u>				

ISBN 2-8318-5981-6

ICS 29.130.20